Marine Atmospheric Boundary Layer Height over the Eastern Pacific: Data Analysis and Model Evaluation

Xubin Zeng Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
,
Michael A. Brunke Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Michael A. Brunke in
Current site
Google Scholar
PubMed
Close
,
Mingyu Zhou Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona, and National Research Center for Marine Environmental Forecasts, State Oceanic Administration, Beijing, China

Search for other papers by Mingyu Zhou in
Current site
Google Scholar
PubMed
Close
,
Chris Fairall NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by Chris Fairall in
Current site
Google Scholar
PubMed
Close
,
Nicholas A. Bond NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by Nicholas A. Bond in
Current site
Google Scholar
PubMed
Close
, and
Donald H. Lenschow National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Donald H. Lenschow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The atmospheric boundary layer (ABL) height (h) is a crucial parameter for the treatment of the ABL in weather and climate models. About 1000 soundings from 11 cruises between 1995 and 2001 over the eastern Pacific have been analyzed to document the large meridional, zonal, seasonal, and interannual variations of h. In particular, its latitudinal distribution in August has three minima: near the equator, in the intertropical convergence zone (ITCZ), and over the subtropical stratus/stratocumulus region near the west coast of California and Mexico. The seasonal peak of h in the ITCZ zone (between 5.6° and 11.2°N) occurs in the spring (February or April), while it occurs in August between the equator and 5.6°N.

Comparison of these data with the 10-yr monthly output of the Community Climate System Model (CCSM2) reveals that overall the model underestimates h, particularly north of 20°N in August and September. Directly applying the radiosonde data to the CCSM2 formulation for computing h shows that, at the original vertical resolution (with the lowest five layers below 2.1 km), the CCSM2 formulation would significantly underestimate h. In particular, the correlation coefficient between the computed and observed h values is only 0.06 for cloudy cases. If the model resolution were doubled below 2.1 km, however, the performance of the model formulation would be significantly improved with a correlation coefficient of 0.78 for cloudy cases.

Corresponding author address: Xubin Zeng, Department of Atmospheric Sciences, The University of Arizona, Tucson, AZ 85721. Email: zeng@atmo.arizona.edu

Abstract

The atmospheric boundary layer (ABL) height (h) is a crucial parameter for the treatment of the ABL in weather and climate models. About 1000 soundings from 11 cruises between 1995 and 2001 over the eastern Pacific have been analyzed to document the large meridional, zonal, seasonal, and interannual variations of h. In particular, its latitudinal distribution in August has three minima: near the equator, in the intertropical convergence zone (ITCZ), and over the subtropical stratus/stratocumulus region near the west coast of California and Mexico. The seasonal peak of h in the ITCZ zone (between 5.6° and 11.2°N) occurs in the spring (February or April), while it occurs in August between the equator and 5.6°N.

Comparison of these data with the 10-yr monthly output of the Community Climate System Model (CCSM2) reveals that overall the model underestimates h, particularly north of 20°N in August and September. Directly applying the radiosonde data to the CCSM2 formulation for computing h shows that, at the original vertical resolution (with the lowest five layers below 2.1 km), the CCSM2 formulation would significantly underestimate h. In particular, the correlation coefficient between the computed and observed h values is only 0.06 for cloudy cases. If the model resolution were doubled below 2.1 km, however, the performance of the model formulation would be significantly improved with a correlation coefficient of 0.78 for cloudy cases.

Corresponding author address: Xubin Zeng, Department of Atmospheric Sciences, The University of Arizona, Tucson, AZ 85721. Email: zeng@atmo.arizona.edu

Save
  • Albrecht, B. A., R. S. Penc, and W. H. Schubert, 1985: An observational study of cloud-topped mixed layers. J. Atmos. Sci, 42 , 800822.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., M. P. Jensen, and W. J. Syrett, 1995: Marine boundary layer structures and fractional cloudiness. J. Geophys. Res, 100 , 1420914222.

    • Search Google Scholar
    • Export Citation
  • Barnes, G., G. D. Emmitt, B. Brummer, M. A. LeMone, and S. Nicholls, 1980: The structure of a fair weather boundary layer based on the results of several measurement strategies. Mon. Wea. Rev, 108 , 349364.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 287–304.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and B. A. Albrecht, 1987: Conserved variable analysis of the convective boundary layer thermodynamic structure over the tropical oceans. J. Atmos. Sci, 44 , 8399.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., C. S. Bretherton, and E. Klinker, 1995: Relation between mean boundary-layer structure and cloudiness at the R/V Valdivia during ASTEX. J. Atmos. Sci, 52 , 27522776.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., and J. M. Wilczak, 2002: Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods. J. Atmos. Oceanic Technol, 19 , 17451758.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M., and Coauthors, 2001: The Community Climate System Model. Bull. Amer. Meteor. Soc, 82 , 23572376.

  • Bond, N. A., 1992: Observations of planetary boundary layer structure in the eastern equatorial Pacific. J. Climate, 5 , 699706.

  • Bretherton, C. S., T. Uttal, C. W. Fairall, S. E. Yuter, R. Weller, D. Baumgardner, K. Comstock, and R. Wood, 2003: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc, 85 , 967977.

    • Search Google Scholar
    • Export Citation
  • Chernykh, I. V., and R. E. Eskridge, 1996: Determination of cloud amount and level from radiosonde soundings. J. Appl. Meteor, 35 , 13621369.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., J. Wang, J. T. Kiehl, G. J. Zhang, D. L. Cooper, and W. E. Eichinger, 1997: Comparison of tropical ocean–atmosphere fluxes with the NCAR Community Climate Model (CCM3). J. Climate, 10 , 30473058.

    • Search Google Scholar
    • Export Citation
  • Connell, B. H., and D. R. Miller, 1995: An interpretation of radiosonde errors in the atmospheric boundary layer. J. Appl. Meteor, 34 , 10701081.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., N. Bond, C. W. Fairall, J. E. Hare, M. J. McPhaden, and R. A. Weller, 2002: Enhanced oceanic and atmospheric monitoring for the Eastern Pacific Investigation of Climate Processes (EPIC) experiment. Eos, Trans. Amer. Geophys. Union, 83 , 205211.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., R. A. Brown, P. H. Flamant, and J. Pelon, 1998: Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar. Bound.-Layer Meteor, 88 , 343361.

    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev, 129 , 357377.

    • Search Google Scholar
    • Export Citation
  • Gryning, S. E., and E. Batchvarova, 2002: Marine boundary layer and turbulent fluxes over the Baltic Sea: Measurements and modeling. Bound.-Layer Meteor, 103 , 2947.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev, 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and J. A. Cotturone, 2001: Multiscale variability of the atmospheric mixed layer over the western Pacific warm pool. J. Atmos. Sci, 58 , 27292750.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Lambert, D., and P. Durand, 1999: The marine atmospheric boundary layer during SEMAPHORE. I: Mean vertical structure and non-axisymmetry of turbulence. Quart. J. Roy. Meteor. Soc, 125 , 495512.

    • Search Google Scholar
    • Export Citation
  • Lappen, C-L., and D. A. Randall, 2001: Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass flux closure. J. Atmos. Sci, 58 , 20212036.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., M. Y. Zhou, C. H. Moeng, D. H. Lenschow, L. J. Miller, and R. L. Grossman, 1999: An observational study of wind profiles in the baroclinic convective mixed layer. Bound.-Layer Meteor, 90 , 4782.

    • Search Google Scholar
    • Export Citation
  • Loehrer, S. M., T. A. Edmands, and J. A. Moore, 1996: TOGA COARE upper-air sounding data archive: Development and quality control procedures. Bull. Amer. Meteor. Soc, 77 , 26512671.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev, 123 , 28252838.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and M. Branson, 1998: Representation of clear and cloudy boundary layers in climate models. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 305–320.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., P. E. Ciesielski, C. Lu, and R. H. Johnson, 1995: Dynamic adjustment of the trade wind inversion layer. J. Atmos. Sci, 52 , 29412952.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and I. Durre, 2003: Comments on “Trends in low and high cloud boundaries and errors in height determination of cloud boundaries.”. Bull. Amer. Meteor. Soc, 84 , 237240.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: On entrainment rates in nocturnal marine stratocumulus. Quart. J. Roy. Meteor. Soc, 129 , 34693493.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Subrahamanyam, D. B., R. Ramachandran, K. S. Gupta, and T. K. Mandal, 2003: Variability of mixed-layer heights over the Indian Ocean and central Arabian Sea during INDOEX, IFP-99. Bound.-Layer Meteor, 107 , 683695.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., C-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci, 55 , 30423064.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor, 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor, 81 , 245269.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol, 19 , 9811002.

    • Search Google Scholar
    • Export Citation
  • Wygaard, J. C., and M. A. LeMone, 1980: Behavior of the refractive index-structure parameter in the entraining convective boundary layer. J. Atmos. Sci, 37 , 15731585.

    • Search Google Scholar
    • Export Citation
  • Yin, B., and B. A. Albrecht, 2000: Spatial variability of atmospheric boundary layer structure over the eastern equatorial Pacific. J. Climate, 13 , 15741592.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 2000: The 1997 Pan American Climate Studies Tropical Eastern Pacific Process Study. Part I: ITCZ region. Bull. Amer. Meteor. Soc, 81 , 451481.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1844 814 215
PDF Downloads 941 147 14