Are the Northern Hemisphere Winter Storm Tracks Significantly Correlated?

Edmund K. M. Chang Institute for Terrestrial and Planetary Atmospheres, Marine Sciences Research Center, State University of New York at Stony Brook, Stony Brook, New York

Search for other papers by Edmund K. M. Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In this study, the correlation between the Northern Hemisphere winter Pacific and Atlantic storm tracks is examined using the NCEP–NCAR reanalysis and the 40-yr ECMWF Re-Analysis (ERA-40), as well as unassimilated aircraft observations. By examining month-to-month variability in the 250-hPa meridional velocity variance, the correlation between the two storm track peaks is found to be as high as 0.5 during the winters between 1975/76 and 1998/99. Here, it is shown that the correlation between the two storm tracks can be clearly detected from the aircraft data. Further analyses of the reanalysis data show that the correlation can also be seen in other eddy variance and covariance statistics, including the poleward heat flux at the 700-hPa level.

The correlation between the two storm tracks, as seen in both reanalysis datasets, is shown to be much weaker during the period 1957/58–1971/72, suggesting a possible regime transition from largely uncorrelated storm tracks to highly correlated storm tracks during the 1970s. However, during this earlier period, the number of aircraft observations is insufficient to verify the low correlation seen in the reanalyses. Thus, low biases in the reanalyses during the earlier period cannot be ruled out.

An ensemble of four GCM simulations performed using the GFDL GCM forced by global observed SST variations between 1950 and 1995 has also been examined. The correlation between the two storm tracks in the GCM simulations is much lower (0.18) than that observed, even if the analysis is restricted to the GCM simulations from the period 1975/76–1994/95. A Monte Carlo test shows that the observed correlation and the GCM correlation are statistically distinct at the 1% level.

Correlations between the Southern Hemisphere summer Pacific and Atlantic storm tracks have also been examined based on the reanalyses datasets. The results suggest that the amplitude of the SH summer Pacific and Atlantic storm tracks are not significantly correlated, showing that seeding of the Atlantic storm track by the Pacific storm track does not necessarily lead to significant correlations between the two storm tracks.

Corresponding author address: Dr. Edmund K. M. Chang, Institute for Terrestrial and Planetary Atmospheres, Marine Sciences Research Center, State University of New York at Stony Brook, Stony Brook, NY 11794-5000. Email: kmchang@notes.cc.sunysb.edu

Abstract

In this study, the correlation between the Northern Hemisphere winter Pacific and Atlantic storm tracks is examined using the NCEP–NCAR reanalysis and the 40-yr ECMWF Re-Analysis (ERA-40), as well as unassimilated aircraft observations. By examining month-to-month variability in the 250-hPa meridional velocity variance, the correlation between the two storm track peaks is found to be as high as 0.5 during the winters between 1975/76 and 1998/99. Here, it is shown that the correlation between the two storm tracks can be clearly detected from the aircraft data. Further analyses of the reanalysis data show that the correlation can also be seen in other eddy variance and covariance statistics, including the poleward heat flux at the 700-hPa level.

The correlation between the two storm tracks, as seen in both reanalysis datasets, is shown to be much weaker during the period 1957/58–1971/72, suggesting a possible regime transition from largely uncorrelated storm tracks to highly correlated storm tracks during the 1970s. However, during this earlier period, the number of aircraft observations is insufficient to verify the low correlation seen in the reanalyses. Thus, low biases in the reanalyses during the earlier period cannot be ruled out.

An ensemble of four GCM simulations performed using the GFDL GCM forced by global observed SST variations between 1950 and 1995 has also been examined. The correlation between the two storm tracks in the GCM simulations is much lower (0.18) than that observed, even if the analysis is restricted to the GCM simulations from the period 1975/76–1994/95. A Monte Carlo test shows that the observed correlation and the GCM correlation are statistically distinct at the 1% level.

Correlations between the Southern Hemisphere summer Pacific and Atlantic storm tracks have also been examined based on the reanalyses datasets. The results suggest that the amplitude of the SH summer Pacific and Atlantic storm tracks are not significantly correlated, showing that seeding of the Atlantic storm track by the Pacific storm track does not necessarily lead to significant correlations between the two storm tracks.

Corresponding author address: Dr. Edmund K. M. Chang, Institute for Terrestrial and Planetary Atmospheres, Marine Sciences Research Center, State University of New York at Stony Brook, Stony Brook, NY 11794-5000. Email: kmchang@notes.cc.sunysb.edu

Save
  • Alexander, M. A., and J. D. Scott, 1996: Atlas of Climatology and Variability in the GFDL R30S14 GCM. Doc. 1996-774-842, U.S. Government Printing Office, 121 pp.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci, 33 , 16071623.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci, 34 , 10401053.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci, 49 , 19241945.

  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5 , 11811201.

    • Search Google Scholar
    • Export Citation
  • Carillo, A., P. M. Ruti, and A. Navarra, 2000: Storm tracks and zonal mean flow variability: A comparison between observed and simulated data. Climate Dyn, 16 , 219228.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Hemispheric and seasonal differences. J. Atmos. Sci, 56 , 17291747.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2003: Midwinter suppression of the Pacific storm track activity as seen in aircraft observations. J. Atmos. Sci, 60 , 13451358.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter. J. Atmos. Sci, 56 , 17081728.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and Y. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15 , 642658.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15 , 21632183.

  • Christoph, M., U. Ulbrich, and P. Speth, 1997: Midwinter suppression of Northern Hemisphere storm track activity in the real atmosphere and in GCM experiments. J. Atmos. Sci, 54 , 15891599.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15 , 216225.

  • Geng, Q., and M. Sugi, 2001: Variability of the North Atlantic cyclone activity in winter analyzed from NCEP–NCAR reanalysis data. J. Climate, 14 , 38633873.

    • Search Google Scholar
    • Export Citation
  • Gordon, C. T., and W. Stern, 1982: A description of the GFDL global spectral model. Mon. Wea. Rev, 110 , 625644.

  • Graham, N. E., and H. F. Diaz, 2001: Evidence for intensification of North Pacific winter cyclones since 1948. Bull. Amer. Meteor. Soc, 82 , 18691893.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., and E. K. M. Chang, 2003: Storm track variations as seen in radiosonde observations and reanalysis data. J. Climate, 16 , 480495.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci, 46 , 163174.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Iskenderian, H., and R. D. Rosen, 2000: Low-frequency signals in midtropospheric submonthly temperature variance. J. Climate, 13 , 23232333.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kidson, J. W., and K. E. Trenberth, 1988: Effects of missing data on estimates of monthly mean general circulation statistics. J. Climate, 1 , 12611275.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc, 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci, 45 , 27182743.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and I. M. Held, 1993: Baroclinic wave packets in models and observations. J. Atmos. Sci, 50 , 14131428.

  • Livezey, R. E., 1995: Field intercomparison. Analysis of Climate Variability, H. von Storch and A. Navarra, Eds., Springer-Verlag, 159–176.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev, 111 , 4659.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc, 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Izumi, and T. Sampe, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Climate, 15 , 18551874.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Sheldon, 1993: A case of downstream baroclinic development over western North America. Mon. Wea. Rev, 121 , 29292950.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A , 605628.

  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12 , 13931408.

    • Search Google Scholar
    • Export Citation
  • Pettersen, S., 1956: Weather Analysis and Forecasting. 2d ed. Vol. 1, McGraw-Hill, 422 pp.

  • Seager, R., Y. Kushnir, M. Visbeck, N. Naik, J. Miller, G. Krahmann, and H. Cullen, 2000: Causes of Atlantic Ocean climate variability between 1958 and 1998. J. Climate, 13 , 28452862.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc, 71 , 988993.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., G. H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks, and baroclinic waveguides. J. Atmos. Sci, 45 , 439462.

    • Search Google Scholar
    • Export Citation
  • Whitaker, L. M., and L. H. Horn, 1984: Northern Hemisphere extratropical cyclone activity for four midseason months. J. Climatol, 4 , 297310.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1987: Statistical considerations for climate experiments. Part II: Multivariate tests. J. Climate Appl. Meteor, 26 , 477487.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1408 341 142
PDF Downloads 140 19 4