• Anisimov, O., , B. Fitzharris, , J. O. Hagen, , R. Jefferies, , H. Marchant, , F. Nelson, , T. Prowse, , and D. G. Vaughan, 2001: Polar regions (Arctic and Antarctic). Climate Change 2001: Impacts, Adaptation and Vulnerability, J. J. McCarthy et al., Eds., Cambridge University Press, 801–841.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., , and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr, 27 , 581591.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., , G. Flato, , and D. Ramsden, 2000: A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate to the twenty-first century. Climate Dyn, 16 , 427450.

    • Search Google Scholar
    • Export Citation
  • Campin, J-M., , and H. Goosse, 1999: Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate. Tellus, 51A , 412430.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , and J. D. Neelin, 1996: Linearization of a longwave radiation scheme for intermediate tropical atmospheric models. J. Geophys. Res, 101D , 1512915145.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2002: A rapidly declining perennial sea ice cover in the Arctic. Geophys. Res. Lett.,29, 1956, doi:10.1029/ 2002GL015650.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 1994: Monte Carlo climate change forecasts with a global coupled ocean–atmosphere model. Climate Dyn, 10 , 119.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., , G. C. Hegerl, , A. Hellbach, , H. Höch, , U. Mikolajewicz, , B. D. Santer, , and R. Voss, 1995: A climate change simulation starting from 1935. Climate Dyn, 11 , 7184.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Deleersnijder, E., , and J. M. Campin, 1995: On the computation of the barotropic mode of a freesurface world ocean model. Ann. Geophys, 13 , 675688.

    • Search Google Scholar
    • Export Citation
  • Deleersnijder, E., , J. P. van Ypersele, , and J. M. Campin, 1993: An orthogonal curvilinear coordinate system for a World Ocean model. Ocean Modelling, 100 , 710.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , R. J. Stouffer, , K. W. Dixon, , M. J. Spelman, , T. R. Knutson, , A. J. Broccoli, , P. J. Kushner, , and R. T. Wetherald, 2002: Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dyn, 19 , 555574.

    • Search Google Scholar
    • Export Citation
  • Dickson, B., , I. Yashayaev, , J. Meincke, , B. Turrell, , S. Dye, , and J. Holfort, 2002: Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 416 , 832837.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., , and J. Brown, 1994: The production of North Atlantic deep water: Sources, rates, and pathways. J. Geophys. Res, 99 , 1231912341.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., , J. Lazier, , J. Meincke, , P. Rhines, , and J. Swift, 1996: Long-term coordinated changes in the convective activity of the North Atlantic. Progress in Oceanography, Vol. 38, Pergamon, 241–295.

    • Search Google Scholar
    • Export Citation
  • Dixon, K. W., , and J. R. Lanzante, 1999: Global mean surface air temperature and North Atlantic overturning in a suite of coupled GCM climate change experiments. Geophys. Res. Lett, 26 , 18851888.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., , and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res, 102 , 1260912646.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2001: Will the North Atlantic Ocean thermohaline circulation weaken during the 21st century? Geophys. Res. Lett, 28 , 10231026.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , and T. Fichefet, 1999: Importance of ice–ocean interactions for the global ocean circulation: A model study. J. Geophys. Res, 104 , 2333723355.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , and H. Renssen, 2001: A two-phase response of the Southern Ocean to an increase in greenhouse gas concentrations. Geophys. Res. Lett, 28 , 34693473.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , E. Deleersnijder, , T. Fichefet, , and M. H. England, 1999: Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. J. Geophys. Res, 104 , 1368113695.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , F. M. Selten, , R. J. Haarsma, , and J. D. Opsteegh, 2001: Decadal variability in high Northern latitudes as simulated by an intermediate-complexity climate model. Ann. Glaciol, 33 , 525532.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , F. M. Selten, , R. J. Haarsma, , and J. D. Opsteegh, 2002: A mechanism of decadal variability of the sea-ice volume in the Northern Hemisphere. Climate Dyn, 19 , 6183.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , F. M. Selten, , R. J. Haarsma, , and J. D. Opsteegh, 2003: Large sea-ice volume anomalies simulated in a coupled climate model. Climate Dyn.,20, 523– 536.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res, 91 , 50375046.

  • Gordon, H. B., , and S. P. O'Farrell, 1997: Transient climate change in the CSIRO coupled model with dynamic sea ice. Mon. Wea. Rev, 125 , 875907.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , R. J. Stouffer, , S. C. B. Raper, , P. A. Stott, , and N. A. Rayner, 2002: An observationally based estimate of the climate sensitivity. J. Climate, 15 , 31173121.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , Y. Ding, , D. J. Griggs, , M. Noguer, , P. J. van der Linden, , X. Dai, , K. Maskell, , and C. A. Johnson, Eds.,. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Huybrechts, P., , and J. de Wolde, 1999: The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate, 12 , 21692188.

    • Search Google Scholar
    • Export Citation
  • IPCC Data Distribution Center, 1999: The IPCC data distribution center CD-ROM, Version 1.0. IPCC Secretariat, Hamburg, Germany. [Available online at http://ipcc-ddc.cru.uea.ac.uk/.].

  • Joos, F., , G-K. Plattner, , T. F. Stocker, , O. Marchal, , and A. Schmittner, 1999: Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science, 284 , 464467.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., , and T. F. Stocker, 2002: Limited predictability of the future thermohaline circulation close to an instability threshold. J. Climate, 15 , 179186.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys, 37 , 164.

  • McCarthy, J. J., , O. F. Canziani, , N. A. Leary, , D. J. Dokken, , and K. S. White, Eds.,. 2001: Climate Change 2001: Impacts, Adaptation and Vulnerability. Cambridge University Press, 1032 pp.

  • Meehl, G. A., , W. M. Washington, , D. J. Erickson, , B. P. Briegleb, , and P. J. Jaumann, 1996: Climate change from increased CO2 and direct and indirect effects of sulfate aerosols. Geophys. Res. Lett, 23 , 37553758.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys, 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Miller, J. R., , and G. L. Russell, 2000: Projected impact of climate change on the freshwater and salt budgets of the Arctic Ocean by a global climate model. Geophys. Res. Lett, 27 , 11831186.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., , T. C. Johns, , M. Eagles, , W. J. Ingram, , and R. A. Davis, 1999: Towards the construction of climate change scenarios. Climatic Change, 41 , 547581.

    • Search Google Scholar
    • Export Citation
  • Nakićenovic, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Nozawa, T., , S. Emori, , A. Numaguti, , Y. Tsushima, , T. Takemura, , T. Nakajima, , A. Abe-Ouchi, , and M. Kimoto, 2001: Projections of future climate change in the 21st century simulated by the CCSR/ NIES CGCM under the IPCC SRES scenarios. Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, T. Matsuno and H. Kida, Eds., Terra Scientific, 15–28.

    • Search Google Scholar
    • Export Citation
  • Opsteegh, J. D., , R. J. Haarsma, , F. M. Selten, , and A. Kattenberg, 1998: ECBILT: A dynamic alternative to mixed boundary conditions in ocean models. Tellus, 50A , 348367.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378 , 145149.

    • Search Google Scholar
    • Export Citation
  • Renssen, H., , H. Goosse, , T. Fichefet, , and J-M. Campin, 2001: The 8.2 kyr BP event simulated by a global atmosphere–sea-ice– ocean model. Geophys. Res. Lett, 28 , 15671570.

    • Search Google Scholar
    • Export Citation
  • Renssen, H., , H. Goosse, , and T. Fichefet, 2003: On the non-linear response of the ocean thermohaline circulation to global deforestation. Geophys. Res. Lett.,30, 1061, doi:10.1029/2002GL016155.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., , L. Bengtsson, , J. Feichter, , J. Lelieveld, , and H. Rodhe, 1998: Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulphur cycle. MPI Rep. 266, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , and C. Wunsch, 1985: Two transatlantic sections: Meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep-Sea Res, 32 , 619664.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., , and D. Rind, 1999: Response to CO2 transient increase in the GISS coupled model: Regional coolings in a warming climate. J. Climate, 12 , 531539.

    • Search Google Scholar
    • Export Citation
  • Schaeffer, M., , F. Selten, , and R. van Dorland, 1998: Linking IMAGE and ECBilt. RIVM Rep. 481508008, 53 pp.

  • Schaeffer, M., , F. Selten, , J. D. Opsteegh, , and H. Goosse, 2002: Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios. Geophys. Res. Lett.,29, 1767, doi:10.1029/ 2002GL015254.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., , M. Yoshimori, , and A. J. Weaver, 2002: Instability of glacial climate in a model of the ocean–atmosphere–cryosphere system. Science, 295 , 14891493.

    • Search Google Scholar
    • Export Citation
  • Schmitz Jr., W. J., 1995: On the interbasin-scale thermohaline circulation. Rev. Geophys, 33 , 151173.

  • Schott, F., , M. Visbeck, , and J. Fischer, 1993: Observations of vertical currents and convection in the central Greenland Sea during winter 1988/1989. J. Geophys. Res, 98 , 1440114421.

    • Search Google Scholar
    • Export Citation
  • Smethie, W. M. J., , H. G. Ostlund, , and H. H. Loosli, 1986: Ventilation of the deep Greenland and Norwegian seas: Evidence from krypton-85, tritium, carbon-14 and argon-39. Deep-Sea Res, 33 , 675703.

    • Search Google Scholar
    • Export Citation
  • Tartinville, B., , J. M. Campin, , T. Fichefet, , and H. Goosse, 2001: Realistic representation of the surface freshwater flux in an ice-ocean general circulation model. Ocean Modell, 3 , 95108.

    • Search Google Scholar
    • Export Citation
  • van der Wal, R. S. W., , and J. Oerlemans, 1994: An energy balance model for the Greenland Ice Sheet. Global Planet. Change, 9 , 115131.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., , J. Fischer, , and F. Schott, 1995: Preconditioning the Greenland Sea for deep convection: Ice formation and ice drift. J. Geophys. Res, 100 , 1848918502.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn, 16 , 755774.

  • Wood, R. A., , A. B. Keen, , J. F. B. Mitchell, , and J. M. Gregory, 1999: Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399 , 572575.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 4
PDF Downloads 20 20 4

The Influence of Ocean Convection Patterns on High-Latitude Climate Projections

View More View Less
  • 1 Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
  • | 2 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
© Get Permissions
Restricted access

Abstract

The mean state and variability of deep convection in the ocean influence the North Atlantic climate. Using an ensemble experiment with a coupled atmosphere–ocean–sea ice model, it is shown that cooling and subdued warming areas can occur over the North Atlantic Ocean and adjacent landmasses under global warming. Different “present-day” convection patterns in the Greenland–Iceland–Norway (GIN) Sea result in different future surface-air temperature changes. At higher latitudes, the more effective positive sea ice feedback increases the likelihood of changes in convection causing a regional cooling that is larger than the warming brought about by the enhanced greenhouse effect. The modeled freshening of deep ocean layers in the North Atlantic in a time period preceding a reorganization of GIN Sea convection is consistent with recent observations. Low-frequency internal variability in the ocean model has relatively little impact on the response patterns.

Current affiliation: National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands

Corresponding author address: Michiel Schaeffer, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, Netherlands. Email: Michiel.Schaeffer@rivm.nl

Abstract

The mean state and variability of deep convection in the ocean influence the North Atlantic climate. Using an ensemble experiment with a coupled atmosphere–ocean–sea ice model, it is shown that cooling and subdued warming areas can occur over the North Atlantic Ocean and adjacent landmasses under global warming. Different “present-day” convection patterns in the Greenland–Iceland–Norway (GIN) Sea result in different future surface-air temperature changes. At higher latitudes, the more effective positive sea ice feedback increases the likelihood of changes in convection causing a regional cooling that is larger than the warming brought about by the enhanced greenhouse effect. The modeled freshening of deep ocean layers in the North Atlantic in a time period preceding a reorganization of GIN Sea convection is consistent with recent observations. Low-frequency internal variability in the ocean model has relatively little impact on the response patterns.

Current affiliation: National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands

Corresponding author address: Michiel Schaeffer, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, Netherlands. Email: Michiel.Schaeffer@rivm.nl

Save