The Influence of Ocean Convection Patterns on High-Latitude Climate Projections

M. Schaeffer Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by M. Schaeffer in
Current site
Google Scholar
PubMed
Close
,
F. M. Selten Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by F. M. Selten in
Current site
Google Scholar
PubMed
Close
,
J. D. Opsteegh Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by J. D. Opsteegh in
Current site
Google Scholar
PubMed
Close
, and
H. Goosse Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by H. Goosse in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mean state and variability of deep convection in the ocean influence the North Atlantic climate. Using an ensemble experiment with a coupled atmosphere–ocean–sea ice model, it is shown that cooling and subdued warming areas can occur over the North Atlantic Ocean and adjacent landmasses under global warming. Different “present-day” convection patterns in the Greenland–Iceland–Norway (GIN) Sea result in different future surface-air temperature changes. At higher latitudes, the more effective positive sea ice feedback increases the likelihood of changes in convection causing a regional cooling that is larger than the warming brought about by the enhanced greenhouse effect. The modeled freshening of deep ocean layers in the North Atlantic in a time period preceding a reorganization of GIN Sea convection is consistent with recent observations. Low-frequency internal variability in the ocean model has relatively little impact on the response patterns.

Current affiliation: National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands

Corresponding author address: Michiel Schaeffer, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, Netherlands. Email: Michiel.Schaeffer@rivm.nl

Abstract

The mean state and variability of deep convection in the ocean influence the North Atlantic climate. Using an ensemble experiment with a coupled atmosphere–ocean–sea ice model, it is shown that cooling and subdued warming areas can occur over the North Atlantic Ocean and adjacent landmasses under global warming. Different “present-day” convection patterns in the Greenland–Iceland–Norway (GIN) Sea result in different future surface-air temperature changes. At higher latitudes, the more effective positive sea ice feedback increases the likelihood of changes in convection causing a regional cooling that is larger than the warming brought about by the enhanced greenhouse effect. The modeled freshening of deep ocean layers in the North Atlantic in a time period preceding a reorganization of GIN Sea convection is consistent with recent observations. Low-frequency internal variability in the ocean model has relatively little impact on the response patterns.

Current affiliation: National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands

Corresponding author address: Michiel Schaeffer, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, Netherlands. Email: Michiel.Schaeffer@rivm.nl

Save
  • Anisimov, O., B. Fitzharris, J. O. Hagen, R. Jefferies, H. Marchant, F. Nelson, T. Prowse, and D. G. Vaughan, 2001: Polar regions (Arctic and Antarctic). Climate Change 2001: Impacts, Adaptation and Vulnerability, J. J. McCarthy et al., Eds., Cambridge University Press, 801–841.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr, 27 , 581591.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., G. Flato, and D. Ramsden, 2000: A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate to the twenty-first century. Climate Dyn, 16 , 427450.

    • Search Google Scholar
    • Export Citation
  • Campin, J-M., and H. Goosse, 1999: Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate. Tellus, 51A , 412430.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 1996: Linearization of a longwave radiation scheme for intermediate tropical atmospheric models. J. Geophys. Res, 101D , 1512915145.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2002: A rapidly declining perennial sea ice cover in the Arctic. Geophys. Res. Lett.,29, 1956, doi:10.1029/ 2002GL015650.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 1994: Monte Carlo climate change forecasts with a global coupled ocean–atmosphere model. Climate Dyn, 10 , 119.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., G. C. Hegerl, A. Hellbach, H. Höch, U. Mikolajewicz, B. D. Santer, and R. Voss, 1995: A climate change simulation starting from 1935. Climate Dyn, 11 , 7184.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Deleersnijder, E., and J. M. Campin, 1995: On the computation of the barotropic mode of a freesurface world ocean model. Ann. Geophys, 13 , 675688.

    • Search Google Scholar
    • Export Citation
  • Deleersnijder, E., J. P. van Ypersele, and J. M. Campin, 1993: An orthogonal curvilinear coordinate system for a World Ocean model. Ocean Modelling, 100 , 710.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., R. J. Stouffer, K. W. Dixon, M. J. Spelman, T. R. Knutson, A. J. Broccoli, P. J. Kushner, and R. T. Wetherald, 2002: Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dyn, 19 , 555574.

    • Search Google Scholar
    • Export Citation
  • Dickson, B., I. Yashayaev, J. Meincke, B. Turrell, S. Dye, and J. Holfort, 2002: Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 416 , 832837.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic deep water: Sources, rates, and pathways. J. Geophys. Res, 99 , 1231912341.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., J. Lazier, J. Meincke, P. Rhines, and J. Swift, 1996: Long-term coordinated changes in the convective activity of the North Atlantic. Progress in Oceanography, Vol. 38, Pergamon, 241–295.

    • Search Google Scholar
    • Export Citation
  • Dixon, K. W., and J. R. Lanzante, 1999: Global mean surface air temperature and North Atlantic overturning in a suite of coupled GCM climate change experiments. Geophys. Res. Lett, 26 , 18851888.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res, 102 , 1260912646.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2001: Will the North Atlantic Ocean thermohaline circulation weaken during the 21st century? Geophys. Res. Lett, 28 , 10231026.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and T. Fichefet, 1999: Importance of ice–ocean interactions for the global ocean circulation: A model study. J. Geophys. Res, 104 , 2333723355.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and H. Renssen, 2001: A two-phase response of the Southern Ocean to an increase in greenhouse gas concentrations. Geophys. Res. Lett, 28 , 34693473.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., E. Deleersnijder, T. Fichefet, and M. H. England, 1999: Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. J. Geophys. Res, 104 , 1368113695.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., F. M. Selten, R. J. Haarsma, and J. D. Opsteegh, 2001: Decadal variability in high Northern latitudes as simulated by an intermediate-complexity climate model. Ann. Glaciol, 33 , 525532.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., F. M. Selten, R. J. Haarsma, and J. D. Opsteegh, 2002: A mechanism of decadal variability of the sea-ice volume in the Northern Hemisphere. Climate Dyn, 19 , 6183.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., F. M. Selten, R. J. Haarsma, and J. D. Opsteegh, 2003: Large sea-ice volume anomalies simulated in a coupled climate model. Climate Dyn.,20, 523– 536.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res, 91 , 50375046.

  • Gordon, H. B., and S. P. O'Farrell, 1997: Transient climate change in the CSIRO coupled model with dynamic sea ice. Mon. Wea. Rev, 125 , 875907.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., R. J. Stouffer, S. C. B. Raper, P. A. Stott, and N. A. Rayner, 2002: An observationally based estimate of the climate sensitivity. J. Climate, 15 , 31173121.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds.,. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Huybrechts, P., and J. de Wolde, 1999: The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate, 12 , 21692188.

    • Search Google Scholar
    • Export Citation
  • IPCC Data Distribution Center, 1999: The IPCC data distribution center CD-ROM, Version 1.0. IPCC Secretariat, Hamburg, Germany. [Available online at http://ipcc-ddc.cru.uea.ac.uk/.].

  • Joos, F., G-K. Plattner, T. F. Stocker, O. Marchal, and A. Schmittner, 1999: Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science, 284 , 464467.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and T. F. Stocker, 2002: Limited predictability of the future thermohaline circulation close to an instability threshold. J. Climate, 15 , 179186.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys, 37 , 164.

  • McCarthy, J. J., O. F. Canziani, N. A. Leary, D. J. Dokken, and K. S. White, Eds.,. 2001: Climate Change 2001: Impacts, Adaptation and Vulnerability. Cambridge University Press, 1032 pp.

  • Meehl, G. A., W. M. Washington, D. J. Erickson, B. P. Briegleb, and P. J. Jaumann, 1996: Climate change from increased CO2 and direct and indirect effects of sulfate aerosols. Geophys. Res. Lett, 23 , 37553758.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys, 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Miller, J. R., and G. L. Russell, 2000: Projected impact of climate change on the freshwater and salt budgets of the Arctic Ocean by a global climate model. Geophys. Res. Lett, 27 , 11831186.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., T. C. Johns, M. Eagles, W. J. Ingram, and R. A. Davis, 1999: Towards the construction of climate change scenarios. Climatic Change, 41 , 547581.

    • Search Google Scholar
    • Export Citation
  • Nakićenovic, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Nozawa, T., S. Emori, A. Numaguti, Y. Tsushima, T. Takemura, T. Nakajima, A. Abe-Ouchi, and M. Kimoto, 2001: Projections of future climate change in the 21st century simulated by the CCSR/ NIES CGCM under the IPCC SRES scenarios. Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, T. Matsuno and H. Kida, Eds., Terra Scientific, 15–28.

    • Search Google Scholar
    • Export Citation
  • Opsteegh, J. D., R. J. Haarsma, F. M. Selten, and A. Kattenberg, 1998: ECBILT: A dynamic alternative to mixed boundary conditions in ocean models. Tellus, 50A , 348367.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378 , 145149.

    • Search Google Scholar
    • Export Citation
  • Renssen, H., H. Goosse, T. Fichefet, and J-M. Campin, 2001: The 8.2 kyr BP event simulated by a global atmosphere–sea-ice– ocean model. Geophys. Res. Lett, 28 , 15671570.

    • Search Google Scholar
    • Export Citation
  • Renssen, H., H. Goosse, and T. Fichefet, 2003: On the non-linear response of the ocean thermohaline circulation to global deforestation. Geophys. Res. Lett.,30, 1061, doi:10.1029/2002GL016155.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe, 1998: Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulphur cycle. MPI Rep. 266, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and C. Wunsch, 1985: Two transatlantic sections: Meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep-Sea Res, 32 , 619664.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., and D. Rind, 1999: Response to CO2 transient increase in the GISS coupled model: Regional coolings in a warming climate. J. Climate, 12 , 531539.

    • Search Google Scholar
    • Export Citation
  • Schaeffer, M., F. Selten, and R. van Dorland, 1998: Linking IMAGE and ECBilt. RIVM Rep. 481508008, 53 pp.

  • Schaeffer, M., F. Selten, J. D. Opsteegh, and H. Goosse, 2002: Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios. Geophys. Res. Lett.,29, 1767, doi:10.1029/ 2002GL015254.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., M. Yoshimori, and A. J. Weaver, 2002: Instability of glacial climate in a model of the ocean–atmosphere–cryosphere system. Science, 295 , 14891493.

    • Search Google Scholar
    • Export Citation
  • Schmitz Jr., W. J., 1995: On the interbasin-scale thermohaline circulation. Rev. Geophys, 33 , 151173.

  • Schott, F., M. Visbeck, and J. Fischer, 1993: Observations of vertical currents and convection in the central Greenland Sea during winter 1988/1989. J. Geophys. Res, 98 , 1440114421.

    • Search Google Scholar
    • Export Citation
  • Smethie, W. M. J., H. G. Ostlund, and H. H. Loosli, 1986: Ventilation of the deep Greenland and Norwegian seas: Evidence from krypton-85, tritium, carbon-14 and argon-39. Deep-Sea Res, 33 , 675703.

    • Search Google Scholar
    • Export Citation
  • Tartinville, B., J. M. Campin, T. Fichefet, and H. Goosse, 2001: Realistic representation of the surface freshwater flux in an ice-ocean general circulation model. Ocean Modell, 3 , 95108.

    • Search Google Scholar
    • Export Citation
  • van der Wal, R. S. W., and J. Oerlemans, 1994: An energy balance model for the Greenland Ice Sheet. Global Planet. Change, 9 , 115131.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Fischer, and F. Schott, 1995: Preconditioning the Greenland Sea for deep convection: Ice formation and ice drift. J. Geophys. Res, 100 , 1848918502.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn, 16 , 755774.

  • Wood, R. A., A. B. Keen, J. F. B. Mitchell, and J. M. Gregory, 1999: Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399 , 572575.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 491 257 61
PDF Downloads 141 33 3