• Boer, G. J., 2000: A study of atmosphere–ocean predictability on long time scales. Climate Dyn, 16 , 469477.

  • Boer, G. J., 2001: Decadal potential predictability in coupled models. CLIVAR Exchanges, No. 19, International CLIVAR Project Office, 3.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2004: Long time-scale potential predictability in an ensemble of coupled climate models. Climate Dyn, 23 , 2944.

  • Broecker, W., 1991: The great ocean conveyor. Oceanography, 4 , 7989.

  • Collins, M., 2002: Climate predictability on interannual to decadal time scales: The initial value problem. Climate Dyn, 19 , 671692.

  • Collins, M., , and B. Sinha, 2003: Predictability of decadal variations in the thermohaline circulation and climate. Geophys. Res. Lett.,30, 1306, doi:10.1029/2002GL016504.

    • Search Google Scholar
    • Export Citation
  • Collins, M., , A. Carril, , H. Drange, , H. Pohlmann, , R. Sutton, , and L. Terray, 2003: North Atlantic decadal predictability. CLIVAR Exchanges, No. 28, International CLIVAR Project Office, 6–7.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn, 16 , 661676.

    • Search Google Scholar
    • Export Citation
  • Dickson, R., , J. Lazier, , J. Meinecke, , P. Rhines, , and J. Swift, 1996: Long-term coordinated changes in the convective activity of the North Atlantic. Progress in Oceanography, Vol. 38, Pergamon, 241–295.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , and K. Bryan, 1997a: Predictability of North Atlantic multidecadal climate variability. Science, 275 , 181184.

  • Griffies, S. M., , and K. Bryan, 1997b: A predictability study of simulated North Atlantic multidecadal variability. Climate Dyn, 13 , 459487.

    • Search Google Scholar
    • Export Citation
  • Grötzner, A., , M. Latif, , A. Timmermann, , and R. Voss, 1999: Interannual to decadal predictability in a coupled ocean–atmosphere general circulation model. J. Climate, 12 , 26072624.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., , and L. Dümenil Gates, 2001: Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model. J. Geophys. Res, 106 , 15031510.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models, part 1—Theory. Tellus, 28 , 473484.

  • Latif, M., , and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , T. P. Barnett, , M. A. Cane, , M. Flügel, , N. E. Graham, , H. von Storch, , J-S. Yu, , and S. E. Zebiak, 1994: A review of ENSO prediction studies. Climate Dyn, 9 , 167179.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res, 103 , 1437514393.

  • Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17 , 16051614.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. Mon. Wea. Rev, 104 , 942952.

  • Marsland, S. J., , H. Haak, , J. H. Jungclaus, , M. Latif, , and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell, 5 , 91127.

    • Search Google Scholar
    • Export Citation
  • Park, W., , and M. Latif, 2005: Ocean dynamics and the nature of air– sea interactions over the North Atlantic. J. Climate, in press.

  • Rhines, P. B., , and S. Häkkinen, 2003: Is the oceanic heat transport in the North Atlantic irrelevant to the climate in Europe? ASOF Newsletter, No. 1, 13–17.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5: Part I: Model description. MPI Rep. 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 127 pp.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing the potential seasonal predicability with an ensemble of multidecadal GCM simulations. J. Climate, 11 , 109120.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , D. S. Battisti, , J. Yin, , N. Gordon, , N. Naik, , A. C. Clement, , and M. A. Cane, 2002: Is the Gulf Stream responsible for Europe's mild winters? Quart. J. Roy. Meteor. Soc, 128 , 25632586.

    • Search Google Scholar
    • Export Citation
  • Terray, L., , S. Valcke, , and A. Piacentini, 1998: OASIS 2.2, ocean atmosphere sea ice soil, user's guide and reference manual. Tech. Rep. TR/CGMC/98-05, CERFACS, Toulouse, France, 77 pp.

    • Search Google Scholar
    • Export Citation
  • Timlin, M. S., , M. A. Alexander, , and C. Deser, 2002: On the reemergence of North Atlantic SST anomalies. J. Climate, 15 , 27072712.

  • Timmermann, A., , M. Latif, , R. Voss, , and A. Grötzner, 1998: Northern Hemisphere interdecadal variability. J. Climate, 11 , 19061931.

  • Trenberth, K. E., , and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transport. J. Climate, 14 , 34333443.

  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 76 7
PDF Downloads 38 38 4

Estimating the Decadal Predictability of a Coupled AOGCM

View More View Less
  • 1 Max-Planck-Institut für Meteorologie, Hamburg, Germany
  • | 2 Leibniz-Institut für Meereswissenschaften, Universität Kiel, Kiel, Germany
  • | 3 Institut für Atmosphäre und Klima, Eidgenössische Technische Hochschule, Zürich, Switzerland
© Get Permissions
Restricted access

Abstract

On seasonal time scales, ENSO prediction has become feasible in an operational framework in recent years. On decadal to multidecadal time scales, the variability of the oceanic circulation is assumed to provide a potential for climate prediction. To investigate the decadal predictability of the coupled atmosphere–ocean general circulation model (AOGCM) European Centre-Hamburg model version 5/Max Planck Institute Ocean Model (ECHAM5/MPI-OM), a 500-yr-long control integration and “perfect model” predictability experiments are analyzed. The results show that the sea surface temperatures (SSTs) of the North Atlantic, Nordic Seas, and Southern Ocean exhibit predictability on multidecadal time scales. Over the ocean, the predictability of surface air temperature (SAT) is very similar to that of SST. Over land, there is little evidence of decadal predictability of SAT except for some small maritime-influenced regions of Europe. The AOGCM produces predictable signals in lower-tropospheric temperature and precipitation over the North Atlantic, but not in sea level pressure.

Corresponding author address: Holger Pohlmann, Max-Planck-Institut für Meteorologie, Bundesstr. 53, D-20146 Hamburg, Germany. Email: holger.pohlmann@dkrz.de

Abstract

On seasonal time scales, ENSO prediction has become feasible in an operational framework in recent years. On decadal to multidecadal time scales, the variability of the oceanic circulation is assumed to provide a potential for climate prediction. To investigate the decadal predictability of the coupled atmosphere–ocean general circulation model (AOGCM) European Centre-Hamburg model version 5/Max Planck Institute Ocean Model (ECHAM5/MPI-OM), a 500-yr-long control integration and “perfect model” predictability experiments are analyzed. The results show that the sea surface temperatures (SSTs) of the North Atlantic, Nordic Seas, and Southern Ocean exhibit predictability on multidecadal time scales. Over the ocean, the predictability of surface air temperature (SAT) is very similar to that of SST. Over land, there is little evidence of decadal predictability of SAT except for some small maritime-influenced regions of Europe. The AOGCM produces predictable signals in lower-tropospheric temperature and precipitation over the North Atlantic, but not in sea level pressure.

Corresponding author address: Holger Pohlmann, Max-Planck-Institut für Meteorologie, Bundesstr. 53, D-20146 Hamburg, Germany. Email: holger.pohlmann@dkrz.de

Save