Abstract
The impacts of the El Niño–Southern Oscillation (ENSO) on the Antarctic region are of special importance in evaluating the variability and change of the climate system in high southern latitudes. In this study, the ENSO signal in modeled precipitation over West Antarctica since 1979 is evaluated using forecast precipitation from several meteorological analyses and reanalyses. Additionally, a dynamical retrieval method (DRM) for precipitation is applied. Over the last two decades, the Southern Oscillation index (SOI) has an overall anticorrelation with precipitation over the West Antarctic sector bounded by 75°–90°S, 120°W–180° while it is positively correlated with precipitation over the South Atlantic sector bounded by 65°–75°S, 30°–60°W.
Decadal variations are found as the relationship between the SOI and West Antarctic precipitation is stronger in the 1990s than that in the 1980s. The polar front jet stream, West Antarctic precipitation, and the SOI show a well-ordered correspondence during the 1990s as the jet zonal speed is negatively correlated to the SOI and positively correlated to West Antarctic precipitation. These relationships are weaker during the 1980s, consistent with the change in sign of the correlation between the SOI and West Antarctic precipitation. The decadal variations are apparently related to changes in the quasi-stationary eddies that determine the local onshore and offshore flow over West Antarctica.
Current affiliation: Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
Corresponding author address: David H. Bromwich, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Rd., Columbus, OH 43210-1002. Email: bromwich@polarmet1.mps.ohio-state.edu