• Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25 , 122137.

    • Search Google Scholar
    • Export Citation
  • Auad, G., A. J. Miller, and W. B. White, 1998: Simulation of heat storages and associated heat budgets in the Pacific Ocean 2. Interdecadal timescale. J. Geophys. Res., 103 , 2762127635.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and D. S. Battisti, 2000: An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys. Res. Lett., 27 , 767770.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22 , 859881.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., and S. Louazel, 2001: Decadal oceanic response to stochastic wind forcing. J. Phys. Oceanogr., 31 , 30203029.

  • daSilva, A. M., C. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 51 pp.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6 , 249266.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–1991. J. Climate, 9 , 18401855.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12 , 16971706.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16 , 5772.

    • Search Google Scholar
    • Export Citation
  • Dong, S., and K. A. Kelly, 2004: Heat budget in the Gulf Stream region: The importance of heat storage and advection. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes. Rev. Geophys., 23 , 357390.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and B. Qiu, 1994: Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J. Phys. Oceanogr., 24 , 16081622.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kelly, K. A., and B. Qiu, 1995: Heat flux estimates for the North Atlantic. Part I: Assimilation of satellite data into a mixed layer model. J. Phys. Oceanogr., 25 , 23442360.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., M. J. Caruso, S. Singh, and B. Qiu, 1996: Observations of atmosphere/ocean coupling in western boundary currents. J. Geophys. Res., 101 , 62956312.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., S. Singh, and R. X. Huang, 1999a: Seasonal variations of sea surface height in the Gulf Stream region. J. Phys. Oceanogr., 29 , 313327.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., L. Thompson, and F. Vivier, 1999b: Heat content changes in the Pacific Ocean. Science, 284 , 5421.

  • Kushnir, Y., and I. M. Held, 1996: Equilibrium atmospheric response to North Atlantic SST anomalies. J. Climate, 9 , 12081219.

  • Latif, M., 1998: Dynamics of interdecadal variability in coupled ocean–atmosphere models. J. Climate, 11 , 602624.

  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9 , 24072423.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994: Interdecadal variability of the Pacific Ocean model response to observed heat flux and wind stress anomalies. Climate Dyn., 9 , 287302.

    • Search Google Scholar
    • Export Citation
  • Moisan, J. R., and P. P. Niiler, 1998: The seasonal heat budget of the North Pacific: Net heat flux and heat storage rates (1950–90). J. Phys. Oceanogr., 28 , 401421.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Z. Sun, 1985: A modeling and observational study of the relationship between sea surface temperature in the northwest Atlantic and the atmospheric general circulation. Quart. J. Roy. Meteor. Soc., 111 , 947975.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1995: Variability and energetics of the Kuroshio Extension and its recirculation gyre from the first two-year TOPEX data. J. Phys. Oceanogr., 25 , 18271842.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2000: Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30 , 14861502.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 32 , 353375.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and K. A. Kelly, 1993: Upper-ocean heat balance in the Kuroshio Extension region. J. Phys. Oceanogr., 23 , 20272041.

  • Qiu, B., and R. X. Huang, 1995: Ventilation of the North Atlantic and the North Pacific: Subduction versus obduction. J. Phys. Oceanogr., 25 , 23742390.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., K. A. Kelly, and T. M. Joyce, 1991: Mean circulation and variability of the Kuroshio Extension from Geosat altimetry data. J. Geophys. Res., 96 , 1849118507.

    • Search Google Scholar
    • Export Citation
  • Rauch, H. E., F. Tung, and C. T. Striebel, 1965: Maximum likelihood estimates of linear dynamic systems. AIAA J., 3 , 14451450.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and A. J. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14 , 39974002.

  • Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29 , 10561070.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15 , 586605.

  • Spall, M. A., R. A. Weller, and P. W. Furey, 2000: Modeling the three-dimensional upper ocean heat budget and subduction rate during the Subduction Experiment. J. Geophys. Res., 105 , 2615126166.

    • Search Google Scholar
    • Export Citation
  • Sutton, R., and P-P. Mathieu, 2002: Response of the atmosphere–ocean mixed layer system to anomalous ocean heat flux convergence. Quart. J. Roy. Meteor. Soc., 128 , 12591275.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., K. A. Kelly, and L. Thompson, 2002: Heat budget of the Kuroshio Extension region: 1993–99. J. Phys. Oceanogr., 32 , 34363454.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 1995: Design of a global observing system for gyre-scale upper ocean temperature variability. Progress in Oceanography, Vol. 36, Pergamon, 169–217.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and C-K. Tai, 1995: Inferring interannual changes in global upper ocean heat storage from TOPEX altimetry. J. Geophys. Res., 100 , 2494324954.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 441 pp.

  • Yualeva, E. N., N. Schneider, D. W. Pierce, and T. P. Barnett, 2001: Modeling of North Pacific climate variability forced by ocean heat flux anomalies. J. Climate, 14 , 40274046.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 298 95 3
PDF Downloads 180 87 2

The Relationship between Oceanic Heat Transport and Surface Fluxes in the Western North Pacific: 1970–2000

View More View Less
  • 1 Applied Physics Laboratory, University of Washington, Seattle, Washington
Restricted access

Abstract

Part of the heat transported poleward from the Tropics by the ocean is stored near the energetic western boundary currents. These storage reservoirs provide a source of interannual to decadal climate fluctuations through their impact on the ocean–atmosphere heat fluxes. Changes in ocean heat storage result from the difference between surface fluxes and the convergence of oceanic heat transport. To estimate the heat budget for 26°–40°N, 140°E–180°, sea surface temperature and subsurface temperatures are assimilated into a one-dimensional model of the upper ocean that is forced by heat fluxes from the NCEP–NCAR reanalysis. Heat transport convergences are inferred as the residual of the heat budget for the period 1970–2000 using the “unknown control” from a Kalman filter/smoother technique. The estimates of heat transport convergence compare qualitatively with direct estimates from a three-dimensional model that uses geostrophic currents from the TOPEX/Poseidon radar altimeter for 1993–99; this period contains the largest lateral fluxes and the largest heat loss from the ocean in the 31-yr record. The analysis of the heat budget demonstrates that, on interannual to decadal time scales, the heat storage rate in the upper ocean is better correlated with lateral heat transport convergence than with surface fluxes. In addition, heat content and surface flux are negatively correlated, demonstrating the dominance of oceanic feedback over atmospheric forcing. The close relationship between heat content and surface fluxes suggests the possibility of predicting surface flux anomalies: there is a small but significant skill in predicting surface flux anomalies up to one year in advance using heat content. SST has no prediction skill.

Corresponding author address: Dr. Kathryn A. Kelly, Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA 98195-5640. Email: kkelly@apl.washington.edu

Abstract

Part of the heat transported poleward from the Tropics by the ocean is stored near the energetic western boundary currents. These storage reservoirs provide a source of interannual to decadal climate fluctuations through their impact on the ocean–atmosphere heat fluxes. Changes in ocean heat storage result from the difference between surface fluxes and the convergence of oceanic heat transport. To estimate the heat budget for 26°–40°N, 140°E–180°, sea surface temperature and subsurface temperatures are assimilated into a one-dimensional model of the upper ocean that is forced by heat fluxes from the NCEP–NCAR reanalysis. Heat transport convergences are inferred as the residual of the heat budget for the period 1970–2000 using the “unknown control” from a Kalman filter/smoother technique. The estimates of heat transport convergence compare qualitatively with direct estimates from a three-dimensional model that uses geostrophic currents from the TOPEX/Poseidon radar altimeter for 1993–99; this period contains the largest lateral fluxes and the largest heat loss from the ocean in the 31-yr record. The analysis of the heat budget demonstrates that, on interannual to decadal time scales, the heat storage rate in the upper ocean is better correlated with lateral heat transport convergence than with surface fluxes. In addition, heat content and surface flux are negatively correlated, demonstrating the dominance of oceanic feedback over atmospheric forcing. The close relationship between heat content and surface fluxes suggests the possibility of predicting surface flux anomalies: there is a small but significant skill in predicting surface flux anomalies up to one year in advance using heat content. SST has no prediction skill.

Corresponding author address: Dr. Kathryn A. Kelly, Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA 98195-5640. Email: kkelly@apl.washington.edu

Save