• Haylock, M., and J. McBride, 2001: Spatial coherence and predictability of Indonesian wet season rainfall. J. Climate, 14 , 38823887.

  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16 , 17751790.

  • Johnson, R. H., and R. A. Houze Jr., 1987: Precipitating cloud systems of the Asian monsoon. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 298–353.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiladis, G. N., and H. F. Diaz, 1989: Global climate anomalies associated with extremes in the Southern Oscillation. J. Climate, 2 , 10691090.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and C-P. Chang, 1987: Planetary scale aspects of the winter monsoon and atmospheric teleconnections. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 161–202.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13 , 42874309.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1987: The Australian summer monsoon. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 203–231.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111 , 19982004.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96 , 365369.

  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Sumi, A., and T. Murakami, 1981: Large-scale aspects of the 1978–79 winter circulation over the greater WMONEX region. Part I: Monthly and seasonal mean fields. J. Meteor. Soc. Japan, 59 , 625645.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 549 217 19
PDF Downloads 386 204 18

On the Relationship between Western Maritime Continent Monsoon Rainfall and ENSO during Northern Winter

View More View Less
  • 1 Department of Meteorology, Naval Postgraduate School, Monterey, California
  • | 2 Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 3 College of Science, Yunnan University, Kunming, Yunnan, China
  • | 4 Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

Several studies have reported that Indonesian rainfall is poorly correlated with El Niño–Southern Oscillation (ENSO) events during the northern winter wet monsoon season. This work studies the relationship between the Niño-3 (5°S–5°N, 150°–90°W) sea surface temperature (SST) and the Maritime Continent monsoon rainfall during 1979–2002. The study indicates that the correlations are mostly negative except in the vicinity of Sumatra and Malay Peninsula (SMP, including the western sections of Java and Borneo), where the correlations range from zero to weakly positive.

The monsoon rainfall during ENSO events is influenced by a pair of anomalous Walker cells and a low-level closed circulation centered near the Philippines. East of SMP, the rainfall is negatively correlated with Niño-3 SST. The anomalous low-level wind over the Indian Ocean west of SMP causes rainfall to also be correlated negatively with Niño-3 SST, but rainfall over SMP is sheltered from this effect because of the high mountains along its western coast. The anomalous cross-equatorial flow associated with ENSO also affects the rainfall over SMP and the area to its east differently. A variation of the cross-equatorial flow may also contribute to the SMP rainfall anomaly.

The result suggests that the previously reported low correlations between Indonesian monsoon rainfall and ENSO are due in part to the averaging of rainfall in two regions with opposite characteristics. The correlation is positive for Indonesia west of 112°E and negative to the east. There is also an interdecadal trend of increasingly negative correlations from 1950–78 to 1979–97. The correlation changes from significantly positive (at 1%) to insignificant in western Indonesia and from insignificant to significantly negative in eastern Indonesia.

Corresponding author address: Dr. C.-P. Chang, Department of Meteorology, Code MR/Cp, Naval Postgraduate School, Monterey, CA 93943. Email: cpchang@nps.navy.mil

Abstract

Several studies have reported that Indonesian rainfall is poorly correlated with El Niño–Southern Oscillation (ENSO) events during the northern winter wet monsoon season. This work studies the relationship between the Niño-3 (5°S–5°N, 150°–90°W) sea surface temperature (SST) and the Maritime Continent monsoon rainfall during 1979–2002. The study indicates that the correlations are mostly negative except in the vicinity of Sumatra and Malay Peninsula (SMP, including the western sections of Java and Borneo), where the correlations range from zero to weakly positive.

The monsoon rainfall during ENSO events is influenced by a pair of anomalous Walker cells and a low-level closed circulation centered near the Philippines. East of SMP, the rainfall is negatively correlated with Niño-3 SST. The anomalous low-level wind over the Indian Ocean west of SMP causes rainfall to also be correlated negatively with Niño-3 SST, but rainfall over SMP is sheltered from this effect because of the high mountains along its western coast. The anomalous cross-equatorial flow associated with ENSO also affects the rainfall over SMP and the area to its east differently. A variation of the cross-equatorial flow may also contribute to the SMP rainfall anomaly.

The result suggests that the previously reported low correlations between Indonesian monsoon rainfall and ENSO are due in part to the averaging of rainfall in two regions with opposite characteristics. The correlation is positive for Indonesia west of 112°E and negative to the east. There is also an interdecadal trend of increasingly negative correlations from 1950–78 to 1979–97. The correlation changes from significantly positive (at 1%) to insignificant in western Indonesia and from insignificant to significantly negative in eastern Indonesia.

Corresponding author address: Dr. C.-P. Chang, Department of Meteorology, Code MR/Cp, Naval Postgraduate School, Monterey, CA 93943. Email: cpchang@nps.navy.mil

Save