• Bergman, J. W., , and M. L. Salby, 1996: Diurnal variations of cloud cover and their relationship to climatological conditions. J. Climate, 9 , 28022820.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., , and M. L. Salby, 1997: The role of cloud diurnal variations in the time-mean energy budget. J. Climate, 10 , 11141124.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and C. Jakob, 2002a: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using the LBA data. J. Geophys. Res.,107, 8045, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and C. Jakob, 2002b: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res.,107, 4732, doi:10.1029/2002JD002264.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M., and Coauthors, 2001: The Community Climate System Model. Bull. Amer. Meteor. Soc, 82 , 23572376.

  • Bonan, G. B., , K. W. Oleson, , M. Vertenstein, , S. Levis, , X. Zeng, , Y. Dai, , R. E. Dickinson, , and Z-L. Yang, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15 , 31233149.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., , C. M. Bitz, , E. C. Hunke, , W. H. Lipscomb, , and J. L. Schramm, 2002: Description of the Community Climate System Model version 2 Sea Ice Model, 62 pp. [Available online at http:// www.ccsm.ucar.edu/models/ccsm2.0/csim/SciGuide/ice_scidoc.pdf.].

    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., , L. S. Chiu, , and G. Yang, 1995: Diurnal cycle of oceanic precipitation from SSM/I data. Mon. Wea. Rev, 123 , 33713380.

    • Search Google Scholar
    • Export Citation
  • Chapman, S., , and R. S. Lindzen, 1970: Atmospheric Tides. D. Reidel, 200 pp.

  • Chen, S. S., , and R. A. Houze Jr., 1997: Diurnal variation and life- cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc, 123 , 357388.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2003: Description of the NCAR Community Atmosphere Model (CAM2). 171 pp. [Available online at http://www.ccsm.ucar.edu/models/atm-cam/docs/description.pdf.].

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001a: Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Climate, 14 , 10921111.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001b: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14 , 11121128.

  • Dai, A., , and C. Deser, 1999: Diurnal and semidiurnal variations in global surface wind and divergence fields. J. Geophys. Res, 104 , 3110931125.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci, 56 , 38743891.

  • Dai, A., , F. Giorgi, , and K. E. Trenberth, 1999a: Observed and model simulated precipitation diurnal cycle over the contiguous United States. J. Geophys. Res, 104 , 63776402.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , K. E. Trenberth, , and T. R. Karl, 1999b: Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range. J. Climate, 12 , 24512473.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , J. Wang, , R. H. Ware, , and T. Van Hove, 2002: Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Res.,107, 4090, doi:10.1029/2001JD000642.

    • Search Google Scholar
    • Export Citation
  • Fu, R., , A. D. Del Genio, , and W. B. Rossow, 1994: Influence of ocean surface conditions on atmospheric vertical thermodynamic structure and deep convection. J. Climate, 7 , 10921107.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev, 125 , 31573171.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc, 80 , 19621970.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res, 99 , 55515568.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., , J. T. Kiehl, , and J. W. Hurrell, 1998: The hydrologic and thermodynamic characteristics of the NCAR CCM3. J. Climate, 11 , 11791206.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., , and S. G. Warren, 1999: Extended edited synoptic cloud reports from ships and land stations over the globe, 1952–1996. ORNL/CDIAC-123, NDP-026C, 71 pp.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., , S. G. Warren, , and J. London, 1995: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Climate, 8 , 14291446.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and K. Woodberry, 1993: The diurnal cycle of tropical convection. J. Geophys. Res, 98 , 1662316637.

  • Higgins, R. W., , J. E. Janowiak, , and Y-P. Yao, 1996: A gridded hourly precipitation data base for the United States (1963–1993). NCEP/ Climate Prediction Center Atlas No. 1, U.S. Dept. of Commerce, Washington, DC, 47 pp.

    • Search Google Scholar
    • Export Citation
  • Hsu, H-H., , and B. Hoskins, 1989: Tidal fluctuations as seen in ECMWF data. Quart. J. Roy. Meteor. Soc, 115 , 247264.

  • Hurrell, J. W., , J. J. Hack, , B. A. Boville, , D. L. Williamson, , and J. T. Kiehl, 1998: The dynamical simulation of the NCAR Community Climate Model version 3 (CCM3). J. Climate, 11 , 12071236.

    • Search Google Scholar
    • Export Citation
  • Ignatov, A., , and G. Gutman, 1999: Monthly mean diurnal cycles in surface temperatures over land for global climate studies. J. Climate, 12 , 19001910.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., , P. A. Arkin, , and M. Morrissey, 1994: An examination of the diurnal cycle in oceanic tropical rainfall using satellite and in situ data. Mon. Wea. Rev, 122 , 22962311.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kent, E. C., , R. J. Riddy, , and P. K. Taylor, 1993: Correction of marine air temperature observations or solar radiation effects. J. Atmos. Oceanic Technol, 10 , 900906.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311150.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys, 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Lieberman, R. S., , C. B. Leovy, , B. A. Boville, , and B. P. Briegleb, 1994: Diurnal heating and cloudiness in a NCAR Community Climate Model (CCM2). J. Climate, 7 , 869889.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , L. D. Fowler, , and D. A. Randall, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13 , 41594179.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1978: Effect of daily variations of cumulonimbus activity on the atmospheric semidiurnal tide. Mon. Wea. Rev, 106 , 526533.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and M. W. Moncrieff, 1998: A numerical study of the diurnal cycle of tropical oceanic convection. J. Atmos. Sci, 55 , 23292344.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., 1991: The diurnal cycle of sea surface temperature in the western equatorial Pacific. TOGA Notes, 2 , 15.

  • Nesbitt, S. W., , and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16 , 14561475.

    • Search Google Scholar
    • Export Citation
  • Oki, T., , and K. Musiake, 1994: Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J. Appl. Meteor, 33 , 14451463.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , Harshvardhan, , and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci, 48 , 4062.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , A. W. Walker, , and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts. J. Climate, 6 , 23942418.

  • Rossow, W. B., , A. W. Walker, , D. E. Beuschel, , and M. D. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP) description of new cloud datasets. World Climate Research Programme, WMO/TD- 737, 115 pp.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., , C. B. Leovy, , and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8 , 17951809.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., , R. C. Wilderspin, , and S. J. Brentnall, 1987: Simulation of the diurnal cycle of outgoing longwave radiation with an atmospheric GCM. Mon. Wea. Rev, 115 , 14511457.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., , J. K. Dukowicz, , and R. C. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60 , 3861.

  • Sorooshian, S., , X. Gao, , K. Hsu, , R. A. Maddox, , Y. Hong, , H. V. Gupta, , and B. Imam, 2002: Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J. Climate, 15 , 9831001.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., , G. Hegerl, , and S. Tett, 2000: A comparison of surface air temperature variability in three 1000-yr coupled ocean–atmosphere model integrations. J. Climate, 13 , 513537.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., , K-M. Lau, , Y. N. Takayabu, , and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci, 54 , 639655.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , A. Dai, , R. M. Rasmussen, , and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc, 84 , 12051217.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., , S. Saha, , J. Schemm, , and J. Huang, 1997: A temporal interpolation method to obtain hourly atmospheric surface pressure tides in reanalysis 1979–1995. J. Geophys. Res, 102 , 2201322024.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev, 103 , 406419.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , C. J. Hahn, , J. London, , R. M. Chervin, , and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Tech. Note NCAR/TN-317 + STR, 42 pp. plus 170 maps. [Available from National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO, 80307.].

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , C. A. Clayson, , and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9 , 17121730.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev, 128 , 40174030.

  • Wilson, C. A., , and J. F. B. Mitchell, 1986: Diurnal variation and cloud in a general circulation model. Quart. J. Roy. Meteor. Soc, 112 , 347369.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., , and J. Slingo, 2001: The diurnal cycle in the Tropics. Mon. Wea. Rev, 129 , 784801.

  • Zeng, X., , and R. E. Dickinson, 1998: Impact of diurnally-varying skin temperature on surface fluxes over the tropical Pacific. Geophys. Res. Lett, 25 , 14111414.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., , M. Zhao, , R. E. Dickinson, , and Y. He, 1999: A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific. J. Geophys. Res, 104 , 15251536.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., , M. Shaikh, , Y. Dai, , R. E. Dickinson, , and R. Myneni, 2002: Coupling of the Common Land Model to the NCAR Community Climate Model. J. Climate, 15 , 18321854.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1995: The diurnal cycle in surface air temperature in the western Pacific warm-pool region. Proc. Int. Science Conf. on TOGA Program, Melbourne, Australia, WMO/TD No. 7171, Vol. 1, 494–498.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res.,107, 4220, doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F., , and K. Hamilton, 1986: Simulation of solar tides in a Canadian Climate Centre general circulation model. J. Geophys. Res, 91 , 1187711896.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 393 393 109
PDF Downloads 237 237 28

The Diurnal Cycle and Its Depiction in the Community Climate System Model

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado*
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

To evaluate the performance of version 2 of the Community Climate System Model (CCSM2) in simulating the diurnal cycle and to diagnose the deficiencies in underlying model physics, 10 years of 3-hourly data from a CCSM2 control run are analyzed for global and large-scale features of diurnal variations in surface air temperature, surface pressure, upper-air winds, cloud amount, and precipitation. The model-simulated diurnal variations are compared with available observations, most of which were derived from 3-hourly synoptic reports and some new results are reported for surface air temperatures. The CCSM2 reproduces most of the large-scale tidal variations in surface pressure and upper-air winds, although it overestimates the diurnal pressure tide by 20%–50% over low-latitude land and underestimates it over most oceans, the Rockies, and other midlatitude land areas. The CCSM2 captures the diurnal amplitude (1°–6°C) and phase [peak at 1400–1600 local solar time (LST)] of surface air temperature over land, but over ocean the amplitude is too small (≤0.2°C). The CCSM2 overestimates the mean total cloud amount by 10%–20% of the sky from ∼15°S to 15°N during both December– January–February (DJF) and June–July–August (JJA) and over northern mid- and high-latitude land areas in DJF, whereas it underestimates the cloud amount by 10%–30% in the subtropics and parts of the midlatitudes. Over the marine stratocumulus regions west to the continents, the diagnostic cloud scheme in the CCSM2 underestimates the mean stratocumulus amount by 10%–30% and does not simulate the observed large diurnal variations (∼3%–10%) in the marine stratocumulus clouds even when driven by observational data. In the CCSM2, warm-season daytime moist convection over land starts prematurely around 0800 LST, about 4 hours too early compared with observations, and plateaus from 1100 to 1800 LST, in contrast to a sharp peak around 1600–1700 LST in observations. The premature initiation of convection prevents convective available potential energy (CAPE) from accumulating in the morning and early afternoon and intense convection from occurring in the mid to late afternoon. As a result of the extended duration of daytime convection over land, the CCSM2 rains too frequently at reduced intensity despite the fairly realistic patterns of rainy days with precipitation >1 mm day−1. Furthermore, the convective versus nonconvective precipitation ratio is too high in the model as deep convection removes atmospheric moisture prematurely. The simulated diurnal cycle of precipitation is too weak over the oceans, especially for convective precipitation. These results suggest that substantial improvements are desirable in the CCSM2 in simulating cloud amount, initiation of warm-season deep convection over land, and in the diurnal cycle in sea surface temperatures.

Corresponding author address: Aiguo Dai, NCAR, P.O. Box 3000, Boulder, CO 80307. Email: adai@ucar.edu

Abstract

To evaluate the performance of version 2 of the Community Climate System Model (CCSM2) in simulating the diurnal cycle and to diagnose the deficiencies in underlying model physics, 10 years of 3-hourly data from a CCSM2 control run are analyzed for global and large-scale features of diurnal variations in surface air temperature, surface pressure, upper-air winds, cloud amount, and precipitation. The model-simulated diurnal variations are compared with available observations, most of which were derived from 3-hourly synoptic reports and some new results are reported for surface air temperatures. The CCSM2 reproduces most of the large-scale tidal variations in surface pressure and upper-air winds, although it overestimates the diurnal pressure tide by 20%–50% over low-latitude land and underestimates it over most oceans, the Rockies, and other midlatitude land areas. The CCSM2 captures the diurnal amplitude (1°–6°C) and phase [peak at 1400–1600 local solar time (LST)] of surface air temperature over land, but over ocean the amplitude is too small (≤0.2°C). The CCSM2 overestimates the mean total cloud amount by 10%–20% of the sky from ∼15°S to 15°N during both December– January–February (DJF) and June–July–August (JJA) and over northern mid- and high-latitude land areas in DJF, whereas it underestimates the cloud amount by 10%–30% in the subtropics and parts of the midlatitudes. Over the marine stratocumulus regions west to the continents, the diagnostic cloud scheme in the CCSM2 underestimates the mean stratocumulus amount by 10%–30% and does not simulate the observed large diurnal variations (∼3%–10%) in the marine stratocumulus clouds even when driven by observational data. In the CCSM2, warm-season daytime moist convection over land starts prematurely around 0800 LST, about 4 hours too early compared with observations, and plateaus from 1100 to 1800 LST, in contrast to a sharp peak around 1600–1700 LST in observations. The premature initiation of convection prevents convective available potential energy (CAPE) from accumulating in the morning and early afternoon and intense convection from occurring in the mid to late afternoon. As a result of the extended duration of daytime convection over land, the CCSM2 rains too frequently at reduced intensity despite the fairly realistic patterns of rainy days with precipitation >1 mm day−1. Furthermore, the convective versus nonconvective precipitation ratio is too high in the model as deep convection removes atmospheric moisture prematurely. The simulated diurnal cycle of precipitation is too weak over the oceans, especially for convective precipitation. These results suggest that substantial improvements are desirable in the CCSM2 in simulating cloud amount, initiation of warm-season deep convection over land, and in the diurnal cycle in sea surface temperatures.

Corresponding author address: Aiguo Dai, NCAR, P.O. Box 3000, Boulder, CO 80307. Email: adai@ucar.edu

Save