• Barkstrom, B. R., , E. F. Harrison, , and R. B. Lee, 1990: Earth Radiation Budget Experiment, Preliminary seasonal results. Eos, Trans. Amer. Geophys. Union, 71 , 297304.

    • Search Google Scholar
    • Export Citation
  • Bounoua, L., , G. J. Collatz, , S. O. Los, , P. J. Sellers, , D. A. Dazlich, , C. J. Tucker, , and D. A. Randall, 2000: Sensitivity of climate to changes in NDVI. J. Climate, 13 , 22772292.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1975: Dynamics of deserts and droughts in Sahel. Quart. J. Roy. Meteor. Soc., 101 , 193202.

  • Charney, J. G., , W. J. Quirk, , S. H. Chow, , and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34 , 13661385.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., , R. A. Betts, , and C. D. Jones, 2000: The impact of dynamic vegetation on Sahelian climate variability in a GCM. Eos, Trans. Amer. Geophys. Union, 81 .(Suppl.), Abstract B61D-02.

    • Search Google Scholar
    • Export Citation
  • Darnell, W. L., , W. F. Staylor, , S. K. Gupta, , N. A. Ritchey, , and A. C. Wilber, 1992: Seasonal variation of surface radiation budget derived from International Satellite Cloud Climatology Project C1 data. J. Geophys. Res., 97 , 1574115760.

    • Search Google Scholar
    • Export Citation
  • DeFries, R. S., , and J. R. G. Townshend, 1994: NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens., 15 , 35673586.

    • Search Google Scholar
    • Export Citation
  • Delire, C., , P. Behling, , M. T. Coe, , J. A. Foley, , R. Jacob, , J. Kutzbacin, , Z. Liu, , and S. Yarrus, 2001: Simulated response of the atmosphere–ocean system to deforestation in the Indonesian Archipelago. Geophys. Res. Lett., 28 , 20812084.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1983: Land surface processes and climate–surface albedos and energy balance. Advances in Geophysics, Vol. 25. Academic Press, 305–353.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1992: Changes in land use. Climate System Modeling, K. E. Trenberth, Ed., Cambridge University Press, 689–701.

  • Dickinson, R. E., , and A. Henderson-Sellers, 1988: Modeling tropical deforestation: A study of GCM land-surface parameterizations. Quart. J. Roy. Meteor. Soc., 114 , 439462.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., , A. Henderson-Sellers, , and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, Boulder, CO, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 1992: GCM studies of the influence of vegetation on the general circulation: The role of albedo in modulating climate change. Ph.D. thesis, University of Maryland, 227 pp.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , and J. Shukla, 1994: Albedo as a modulator of climate response to tropical deforestation. J. Geophys. Res., 99 , 2086320877.

    • Search Google Scholar
    • Export Citation
  • Dorman, J. L., , and P. J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere Model (SiB). J. Appl. Meteor., 28 , 833855.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., , and P. S. Eagleson, 1989: Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability. J. Climate, 2 , 816832.

    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., , and R. E. Dickinson, 1997: RCCM2-BATS model over tropical South America: Applications to tropical deforestation. J. Climate, 10 , 19441964.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., , Z-L. Yang, , and R. E. Dickinson, 1993: The Project for Intercomparison of Land-surface Parameterization Schemes. Bull. Amer. Meteor. Soc., 74 , 13351349.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., 1992: A 1951–80 global land precipitation climatology for the evaluation of general circulation models. Climate Dyn., 7 , 5772.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., , T. J. Osborn, , and T. C. Johns, 1998: Precipitation sensitivity to global warming: Comparison of observations with HadCM2 simulations. Geophys. Res. Lett., 25 , 33793382.

    • Search Google Scholar
    • Export Citation
  • Kelliher, F. M., , R. Leuning, , M. R. Raupach, , and E-D. Schulze, 1995: Maximum conductances for evaporation from global vegetation types. Agric. For. Meteor., 73 , 116.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , and P. C. D. Milly, 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 10 , 15781591.

    • Search Google Scholar
    • Export Citation
  • Laurance, W. F., , M. A. Cochrane, , S. Bergen, , P. M. Fearnside, , P. Delamonica, , C. Barber, , S. D'Angelo, , and T. Fernandes, 2001: The future of the Brazilian Amazon. Science, 291 , 438439.

    • Search Google Scholar
    • Export Citation
  • Lean, J., , and D. A. Warrilow, 1989: Simulation of the regional climatic impact of Amazon deforestation. Nature, 342 , 411413.

  • Lin, J. W-B., , and J. D. Neelin, 2002: Considerations for stochastic convective parameterization. J. Atmos. Sci., 59 , 959975.

  • Lofgren, B. M., 1995a: Sensitivity of land–ocean circulations, precipitation, and soil moisture to perturbed land surface albedo. J. Climate, 8 , 25212542.

    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., 1995b: Surface albedo–climate feedback simulated using two-way coupling. J. Climate, 8 , 25432562.

  • Los, S., and Coauthors, 2000: A global 9-yr biophysical land surface dataset from NOAA AVHRR data. J. Hydrometeor., 1 , 183199.

  • Los, S., , G. J. Collatz, , L. Bounoua, , P. J. Sellers, , and C. J. Tucker, 2001: Global interannual variations in sea surface temperature and land surface vegetation air temperature, and precipitation. J. Climate, 14 , 15351549.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57 , 17411766.

  • Ramankutty, N., , and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13 , 9971027.

    • Search Google Scholar
    • Export Citation
  • Schulze, E-D., , F. M. Kelliher, , C. Korner, , J. Lloyd, , and R. Leuning, 1994: Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling excercise. Annu. Rev. Ecol. Syst., 25 , 629660.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., , S. O. Los, , C. J. Tucker, , C. O. Justice, , D. A. Dazlich, , G. J. Collatz, , and D. A. Randall, 1994: A global 1 by 1 degree NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI. Int. J. Remote Sens., 15 , 35193545.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., , D. A. Randall, , C. J. Collatz, , J. A. Berry, , C. B. Field, , D. A. Dazlich, , C. Zhang, , C. D. Collelo, , and L. Bounoua, 1996a: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. J. Climate, 9 , 676705.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., , S. O. Los, , C. J. Tucker, , C. O. Justice, , D. A. Dazlich, , G. J. Collatz, , and D. A. Randall, 1996b: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 2: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9 , 706737.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., , and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the Earth's climate. Science, 215 , 14981500.

  • Shukla, J., , C. Nobre, , and P. Sellers, 1990: Amazon deforestation and climate change. Science, 247 , 13221325.

  • Shuttleworth, W. J., 1988: Evaporation from Amazonian rain forest. Proc. Roy. Soc. London, 233B , 321346.

  • Sud, Y. C., , J. Shukla, , and Y. Mintz, 1988: Influence of land surface roughness on atmospheric circulation and precipitation: A sensitivity study with a general circulation model. J. Appl. Meteor., 27 , 10361054.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., , G. K. Walker, , J-H. Kim, , G. E. Liston, , P. J. Sellers, , and W. K-M. Lau, 1996: Biogeophysical consequences of a tropical deforestation scenario: A GCM simulation study. J. Climate, 9 , 32253247.

    • Search Google Scholar
    • Export Citation
  • Wright, I. R., , C. A. Nobre, , and J. Tomasella, and Coauthors, 1996: Towards a GCM surface parameterization of Amazonia. Amazonian Deforestation and Climate, J. H. C. Gash et al., Eds., John Wiley and Sons, 473–504.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., 1991: A two-dimensional coupled biosphere–atmosphere model and its application. Adv. Atmos. Sci., 8 , 447458.

  • Xue, Y., 1997: Biosphere feedback on regional climate in tropical North Africa. Quart. J. Roy. Meteor. Soc., 123 , 14831515.

  • Xue, Y., , and J. Shukla, 1993: The influence of land surface properties on Sahel climate. Part I: Desertification. J. Climate, 6 , 22322245.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., , and J. D. Neelin, 1999: A land–atmosphere interaction theory for the tropical deforestation problem. J. Climate, 12 , 857872.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., , J. D. Neelin, , K-M. Lau, , and C. J. Tucker, 1999: Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science, 286 , 15371547.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., , J. D. Neelin, , and C. Chou, 2000: A quasi-equilibrium tropical circulation model—Implementation and simulation. J. Atmos. Sci., 57 , 17671796.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , K. McGuffie, , and A. Henderson-Sellers, 1996: Impacts of tropical deforestation. Part II: The role of large-scale dynamics. J. Climate, 9 , 24982521.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 197 197 10
PDF Downloads 88 88 7

Sensitivity of Tropical Land Climate to Leaf Area Index: Role of Surface Conductance versus Albedo

View More View Less
  • 1 Department of Atmospheric Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California
  • | 2 Department of Meteorology, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Tropical land climate sensitivities to surface properties are studied using an intermediate complexity atmosphere model. The focus here is on land surface vegetation feedbacks to the atmosphere through surface conductance and albedo. Both properties are linked by a parameterization on leaf area index so that their relative impacts can be compared. For a given percent change in leaf area index, it is found that low and moderate vegetation regions such as the Sahel have a higher sensitivity than rain forest regions such as the Amazon in local total precipitation anomaly, as well as fractional change in precipitation. Comparison of sensitivities to changes in surface conductance and albedo shows that neither is negligible and their relative influence differs among local climatic regions, typified by different vegetation types. High precipitation rain forest regions are more influenced by surface conductance due to the large water recycling ratio there, while albedo has a larger influence in arid, low vegetation regions by modifying the energy balance and large-scale atmospheric circulation. In regions of moderate precipitation and vegetation, altered surface conductance and albedo have comparable effects on precipitation. Surface conductance and albedo have opposing effects on surface temperature but surface conductance has the dominant impact on both surface temperature and evapotranspiration.

Corresponding author address: Dr. J. David Neelin, Department of Atmospheric Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1565. Email: neelin@atmos.ucla.edu

Abstract

Tropical land climate sensitivities to surface properties are studied using an intermediate complexity atmosphere model. The focus here is on land surface vegetation feedbacks to the atmosphere through surface conductance and albedo. Both properties are linked by a parameterization on leaf area index so that their relative impacts can be compared. For a given percent change in leaf area index, it is found that low and moderate vegetation regions such as the Sahel have a higher sensitivity than rain forest regions such as the Amazon in local total precipitation anomaly, as well as fractional change in precipitation. Comparison of sensitivities to changes in surface conductance and albedo shows that neither is negligible and their relative influence differs among local climatic regions, typified by different vegetation types. High precipitation rain forest regions are more influenced by surface conductance due to the large water recycling ratio there, while albedo has a larger influence in arid, low vegetation regions by modifying the energy balance and large-scale atmospheric circulation. In regions of moderate precipitation and vegetation, altered surface conductance and albedo have comparable effects on precipitation. Surface conductance and albedo have opposing effects on surface temperature but surface conductance has the dominant impact on both surface temperature and evapotranspiration.

Corresponding author address: Dr. J. David Neelin, Department of Atmospheric Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1565. Email: neelin@atmos.ucla.edu

Save