• Aitchison, J., , and I. R. Dunsmore, 1975: Statistical Prediction Analysis. Cambridge University Press, 273 pp.

  • Anderson, J., , H. van den Dool, , A. Barnston, , W. Chen, , W. Stern, , and J. Ploshay, 1999: Present-day capabilities of numerical and statistical models for atmospheric extratropical seasonal simulation and prediction. Bull. Amer. Meteor. Soc., 80 , 13491361.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , M. H. Glantz, , and Y. He, 1999: Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997/98 El Niño episode and the 1998 La Niña onset. Bull. Amer. Meteor. Soc., 80 , 217243.

    • Search Google Scholar
    • Export Citation
  • Berkson, J., 1969: Estimation of a linear function for a calibration line: Consideration of a recent proposal. Technometrics, 11 , 649660.

    • Search Google Scholar
    • Export Citation
  • Berliner, L. M., , R. A. Levine, , and D. J. Shea, 2000a: Bayesian climate change assessment. J. Climate, 13 , 38053820.

  • Berliner, L. M., , C. K. Wikle, , and N. Cressie, 2000b: Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. J. Climate, 13 , 39533968.

    • Search Google Scholar
    • Export Citation
  • Brown, P. J., 1982: Multivariate calibration. J. Roy. Stat. Soc., 44B , 287321.

  • Brown, P. J., 1994: Measurement, Regression and Calibration. Oxford Statistical Science Series, Vol. 12, Oxford Science Publications, 210 pp.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., , and D. B. Stephenson, 1999: The “Normality” of El Niño. Geophys. Res. Lett., 26 , 10271030.

  • Chow, S., , and J. Shao, 1990: On the difference between the classical and inverse methods of calibration. Appl. Stat., 39 , 219228.

  • Clarke, G. M., , and D. Cooke, 1992: A Basic Course in Statistics. 3d ed. Edward Arnold, 451 pp.

  • Coelho, C. A. S., , S. Pezzulli, , M. Balmaseda, , F. J. Doblas-Reyes, , and D. B. Stephenson, 2003: Skill and reliability of coupled model seasonal forecasting systems: A Bayesian assessment of ENSO forecasts from ECMWF. ECMWF Tech. Memo. 426, 17 pp.

    • Search Google Scholar
    • Export Citation
  • Draper, N. R., , and H. Smith, 1998: Applied Regression Analysis. 3d ed. John Wiley and Sons, 706 pp.

  • Eisenhart, C., 1939: The interpretation of certain regression methods and their use in biological and industrial research. Ann. Math. Stat., 10 , 162186.

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1962: A Bayesian approach to decision making in applied meteorology. J. Appl. Meteor., 1 , 169177.

  • Epstein, E. S., 1985: Statistical Inference and Prediction in Climatology: A Bayesian Approach. Meteor. Monogr., No. 42, Amer. Meteor. Soc., 199 pp.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., , and L. M. Leslie, 1987: Combining predictive schemes in short-term forecasting. Mon. Wea. Rev., 115 , 16401644.

  • Fraedrich, K., , and N. R. Smith, 1989: Combining predictive schemes in long-range forecasting. J. Climate, 2 , 291294.

  • Halperin, M., 1970: On inverse estimation in linear regression. Technometrics, 12 , 727736.

  • Hannachi, A., , D. B. Stephenson, , and K. R. Sperber, 2003: Probability-based methods for quantifying nonlinearity in the ENSO. Climate Dyn., 20 , 241256.

    • Search Google Scholar
    • Export Citation
  • Hoadley, B., 1970: A Bayesian look at inverse linear regression. J. Amer. Stat. Assoc., 65 , 356369.

  • Horel, J. D., , and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109 , 813829.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. N., , and D. B. Stephenson, 2003: Forecast Verification: A Practitioner's Guide in Atmospheric Science. Wiley and Sons, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., , and F. W. Zwiers, 2002: Climate predictions with multimodel ensembles. J. Climate, 15 , 793799.

  • Krishnamurti, T. N., , C. M. Kishtawal, , T. LaRow, , D. Bachiochi, , Z. Zhang, , C. E. Williford, , S. Gadgil, , and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285 , 15481550.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , C. M. Kishtawal, , Z. Zhang, , T. LaRow, , D. Bachiochi, , E. Williford, , S. Gadgil, , and S. Surendran, 2000a: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13 , 41964216.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , D. W. Shin, , and C. E. Williford, 2000b: Improving tropical precipitation forecasts from a multianalysis superensemble. J. Climate, 13 , 42174227.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors, 2001: Real-time multianalysis–multimodel superensemble forecasts of precipitation using TRMM and SSM/I products. Mon. Wea. Rev., 129 , 28612883.

    • Search Google Scholar
    • Export Citation
  • Krutchkoff, R. G., 1967: Classical and inverse methods of calibration. Technometrics, 9 , 525539.

  • Krutchkoff, R. G., 1969: Classical and inverse methods of calibration in extrapolation. Technometrics, 11 , 605608.

  • Krzysztofowicz, R., 1983: Why should a forecaster and a decision maker use Bayes theorem. Water Resour. Res., 19 , 327336.

  • Krzysztofowicz, R., , and H. D. Herr, 2001: Hydrologic uncertainty processor for probabilistic river stage forecasting: Precipitation-dependent model. J. Hydrol., 249 , 4668.

    • Search Google Scholar
    • Export Citation
  • Landsea, C., , and A. Knaff, 2000: How much skill was there in forecasting the very strong 1997–98 El Niño? Bull. Amer. Meteor. Soc., 81 , 21072120.

    • Search Google Scholar
    • Export Citation
  • Lee, P. M., 1997: Bayesian Statistics: An Introduction. 2d ed. Arnold, 344 pp.

  • Mason, S. J., , and G. M. Mimmack, 2002: Comparison of some statistical methods of probabilistic forecasting of ENSO. J. Climate, 15 , 829.

    • Search Google Scholar
    • Export Citation
  • Metzger, S., , M. Latif, , and K. Fraedrich, 2004: Combining ENSO forecasts: A feasibility study. Mon. Wea. Rev., 132 , 456472.

  • Palmer, T. N., and Coauthors, 2004: Development of a European Multi-Model Ensemble System for Seasonal to Inter-annual Prediction (DEMETER). Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Patt, A., 2000: Communicating probabilistic forecasts to decision makers: A case study of Zimbabwe. Belfer Center for Science and International Affairs (BCSIA), Environment and Natural Resources Program, Kennedy School of Government, Harvard University, Discussion paper 2000-19, 58 pp. [Available online at http://environment.harvard.edu/gea.].

    • Search Google Scholar
    • Export Citation
  • Pavan, V., , and F. J. Doblas-Reyes, 2000: Multi-model seasonal hindcasts over the Euro-Atlantic: Skill scores and dynamic features. Climate Dyn., 16 , 611625.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., , U. Lall, , and S. E. Zebiak, 2002: Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles. Mon. Wea. Rev., 130 , 17921811.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stockes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1986: North American precipitation and temperature associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114 , 23522362.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1989: Precipitation patterns associated with high index phase of Southern Oscillation. J. Climate, 2 , 268284.

    • Search Google Scholar
    • Export Citation
  • Seber, G. A. F., 1977: Linear Regression Analysis. John Wiley and Sons, 465 pp.

  • Stefanova, L., , and T. N. Krishnamurti, 2002: Interpretation of seasonal climate forecast using Brier Skill Score, the Florida State University superensemble, and the AMIP-I dataset. J. Climate, 15 , 537544.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., 1997: Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon. Wea. Rev., 125 , 809818.

  • Stockdale, T. N., , D. L. T. Anderson, , J. O. S. Alves, , and M. A. Balmaseda, 1998: Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature, 392 , 370373.

    • Search Google Scholar
    • Export Citation
  • Stoeckenius, T., 1981: Interannual variations of tropical precipitation patterns. Mon. Wea. Rev., 109 , 12331247.

  • Swets, J. A., 1988: Measuring the accuracy of diagnostic systems. Science, 240 , 12851293.

  • Taylor, J. W., , and R. Buizza, 2003: Using weather ensemble predictions in electricity demand forecasting. Int. J. Forecasting, 19 , 5770.

    • Search Google Scholar
    • Export Citation
  • Thompson, P. D., 1977: How to improve accuracy by combining independent forecasts. Mon. Wea. Rev., 105 , 228229.

  • Trenberth, K. E., 1998: Development and forecasts of the 1997/98 El Niño: CLIVAR scientific issues. CLIVAR Exchange, 3 , 414.

  • Webster, P. J., , and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118 , 877926.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. 1st ed. Academic Press, 467 pp.

  • Williams, E. J., 1969: A note on regression methods in calibration. Technometrics, 11 , 189192.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 267 3
PDF Downloads 129 129 1

Forecast Calibration and Combination: A Simple Bayesian Approach for ENSO

View More View Less
  • 1 Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 2 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • | 3 Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model has been used to combine empirical and raw coupled model December SST Niño-3.4 index forecasts started at the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression between December and the preceding July Niño-3.4 index values over the period 1950–2001. Coupled model ensemble forecasts for the period 1987–99 were provided by ECMWF, as part of the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to climatological forecasts, of around 50% over the period 1987–99. The combined forecast gives an increased skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.

Corresponding author address: C. A. S. Coelho, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: c.a.d.s.coelho@reading.ac.uk

Abstract

This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model has been used to combine empirical and raw coupled model December SST Niño-3.4 index forecasts started at the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression between December and the preceding July Niño-3.4 index values over the period 1950–2001. Coupled model ensemble forecasts for the period 1987–99 were provided by ECMWF, as part of the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to climatological forecasts, of around 50% over the period 1987–99. The combined forecast gives an increased skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.

Corresponding author address: C. A. S. Coelho, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: c.a.d.s.coelho@reading.ac.uk

Save