• Bretherton, C. S., , C. Smith, , and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , and A. N. Rogers, 2001: The El Niño–Southern Oscillation modulation of West Antarctic precipitation. West Antarctic Ice Sheet: Behavior and Environment, R. B. Alley and R. A. Bindschadler, Eds., Antarctic Research Series, Vol. 77, Amer. Geophys. Union, 91–104.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , A. J. Monaghan, , and Z. Guo, 2003: Modeling the ENSO modulation of Antarctic climate in the late 1990s with Polar MM5. J. Climate, 17 , 109132.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , and I. G. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15 , 11591174.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 2003: Atmospheric teleconnections involving the Southern Ocean. J. Geophys. Res.,108, 8080, doi:10.1029/2000JC000379.

  • Comiso, J. C., 2000: Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate, 13 , 16741696.

    • Search Google Scholar
    • Export Citation
  • Doran, P. T., and Coauthors, 2002: Antarctic climate cooling and terrestrial ecosystem response. Nature, 415 , 517520.

  • Enomoto, H., and Coauthors, 1998: Winter warming over Dome Fuji, East Antarctica, and the semiannual oscillation in the atmospheric circulation. J. Geophys. Res., 103 (D18) 2310323111.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , and D. S. Battisti, 1999: Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12 , 21132123.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., , and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302 , 273275.

  • Gloersen, P., , D. Cavalieri, , W. J. Campbell, , and J. Zwally, 1990: Nimbus-7 SMMR polar radiances and Arctic and Antarctic sea-ice concentrations. National Snow and Ice Data Center CD-ROM, Boulder, CO.

    • Search Google Scholar
    • Export Citation
  • Gong, D., , and S. Wang, 1999: Definition of Antarctic Oscillation Index. Geophys. Res. Lett., 26 (4) 459462.

  • Hines, K. M., , D. H. Bromwich, , and G. J. Marshall, 2000: Artificial surface pressure trends in the NCEP–NCAR reanalysis over the Southern Ocean and Antarctica. J. Climate, 13 , 39403952.

    • Search Google Scholar
    • Export Citation
  • Hirasawa, N., , H. Nakamura, , and T. Yamanouchi, 2000: Abrupt changes in meteorological conditions observed at an inland Antarctic station in association with wintertime blocking. Geophys. Res. Lett., 27 (13) 19111914.

    • Search Google Scholar
    • Export Citation
  • Ichiyanagi, K., , A. Numaguti, , and K. Kata, 2002: Interannual variation in stable isotopes in Antarctic precipitation in response to El Niño–Southern Oscillation. Geophys. Res. Lett.,29, 1001, doi:10.129/2000GL012815.

    • Search Google Scholar
    • Export Citation
  • Jones, J., , and M. Widmann, 2003: Instrument- and tree-ring-based estimates of the Antarctic Oscillation. J. Climate, 16 , 35113524.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kidson, J. W., 1999: Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP–NCAR reanalysis. J. Climate, 12 , 28082830.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., , and J. A. Renwick, 2002: The Southern Hemisphere evolution of ENSO during 1981–1999. J. Climate, 15 , 847863.

  • King, J. C., 1994: Recent climate variability in the vicinity of the Antarctic Peninsula. Int. J. Climatol., 14 , 357369.

  • King, J. C., , and J. Turner, 1997: Antarctic Meteorology and Climatology. Cambridge University Press, 409 pp.

  • King, J. C., , and J. C. Comiso, 2003: The spatial coherence of interannual temperature variations in the Antarctic Peninsula. Geophys. Res. Lett.,30, 1040, doi:10.129/2002GL015580.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247268.

    • Search Google Scholar
    • Export Citation
  • Kuhn, M. H., , A. J. Riordan, , and I. A. Wagner, 1973: The climate of Plateau Station. Climate of the Arctic, G. Weller and S. A. Bowling, Eds., Geophysical Institute, University of Alaska, 255–267.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., , and J. C. Comiso, 2002: Spatial patterns of variability in Antarctic surface temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys. Res. Lett.,29, 1705, doi:10.1029/2002GL015415.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2002a: Analysis of recent circulation and thermal advection change in the northern Antarctic Peninsula. Int. J. Climatol., 22 , 15571567.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2002b: Trends in Antarctic geopotential height and temperature: A comparison between NCEP–NCAR and radiosonde data. J. Climate, 15 , 659674.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J., , and J. Stroeve, 2001: DMSP SSM/I daily polar gridded brightness temperatures. National Snow and Ice Data Center CD-ROM, Boulder, CO.

    • Search Google Scholar
    • Export Citation
  • Mayewski, P. A., 2003: Antarctic oversnow traverse-based Southern Hemisphere climate reconstruction. Eos, Trans. Amer. Geophys. Union, 84 , 205210.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13 , 35993610.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and G. H. White, 1985: Teleconnections in the Southern Hemisphere. Mon. Wea. Rev., 113 , 2237.

  • Mo, K. C., , and R. W. Higgins, 1998: The Pacific South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126 , 15811596.

    • Search Google Scholar
    • Export Citation
  • Morgan, V., , M. Delmotte, , T. van Ommen, , J. Jouzel, , J. Chappellaz, , S. Woon, , V. Masson-Delmotte, , and D. Raynaud, 2002: Relative timing of deglacial and climate events in Antarctica and Greenland. Science, 297 , 18621864.

    • Search Google Scholar
    • Export Citation
  • Noone, D., , and I. Simmonds, 2002: Annular variation in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J. Geophys. Res.,107, 4742, doi:10.129/2002JD00262.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , and R. F. Cahalan, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Petit, J. R., and Coauthors, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399 , 429436.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., , and M. J. Revell, 1999: Blocking over the South Pacific and Rossby wave propagation. Mon. Wea. Rev., 127 , 22332247.

  • Ribera, P., , and M. E. Mann, 2003: ENSO related variability in the Southern Hemisphere, 1948–2000. Geophys Res. Lett.,30, 1006, doi:10.129/2002GL015818.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., , and E. J. Steig, 2002: Spatial and temporal variability of Antarctic ice sheet microwave brightness temperatures. Geophys. Res. Lett.,29, 1984, doi:10.129/2002GL15490.

    • Search Google Scholar
    • Export Citation
  • Shuman, C. A., , and C. R. Stearns, 2001: Decadal length composite inland West Antarctic temperature records. J. Climate, 14 , 19771988.

    • Search Google Scholar
    • Export Citation
  • Shuman, C. A., , and J. C. Comiso, 2002: In situ and satellite surface temperature records in Antarctica. Ann. Glaciol., 13 , 113120.

  • Steig, E. J., , D. L. Morse, , E. D. Waddington, , M. Stuiver, , P. M. Grootes, , P. A. Mayewski, , S. L. Whitlow, , and M. S. Twickler, 2000: Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geogr. Ann., 82A , 213235.

    • Search Google Scholar
    • Export Citation
  • Surdyk, S., 2002: Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: An analytical approach. Remote Sens. Environ., 80 , 256271.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296 , 895899.

  • van den Broeke, M., 2000a: On the interpretation of Antarctic temperature trends. J. Climate, 13 , 38853889.

  • van den Broeke, M., 2000b: The semiannual oscillation and Antarctic climate. Part 5: Impact on the annual temperature cycle as derived from the NCEP/NCAR reanalysis. Climate Dyn., 16 , 369377.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., , G. J. Marshall, , W. M. Connolley, , J. C. King, , and R. Mulvaney, 2001: Devil in the detail. Science, 293 , 17771779.

  • von Storch, H., , and F. W. Zweirs, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wallace, J. M., , C. Smith, , and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5 , 561576.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1996: Antarctica. Encyclopedia of Climate and Weather, S. H. Schneider, Ed., Oxford University Press, 32–39.

  • Watanabe, O., , J. Jouzel, , S. Johnsen, , F. Parrenin, , H. Shoji, , and N. Yoshida, 2003: Homogeneous climate variability across East Antarctica over the past few glacial cycles. Nature, 422 , 509512.

    • Search Google Scholar
    • Export Citation
  • White, J. W. C., , E. J. Steig, , J. Cole, , E. R. Cook, , and S. J. Johnsen, 1999: Recent, annually resolved climate as recorded in stable isotope ratios in ice cores from Greenland and Antarctica. Preprints, 10th Symp. on Global Change Studies, Dallas, TX, Amer. Meteor. Soc., 300–302.

    • Search Google Scholar
    • Export Citation
  • Winebrenner, D. P., , E. J. Steig, , and D. P. Schneider, 2004: Temporal covariation of surface and microwave brightness temperatures in Antarctica, with implications for the observation of surface temperature variability using satellite data. Ann. Glaciol., in press.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., 1977: Microwave emissivity and the accumulation rate of polar firn. J. Glaciol., 18 , 195215.

  • Zwally, H. J., , and S. Fiegles, 1994: Extent and duration of Antarctic surface melting. J. Glaciol., 40 (136) 463476.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 236 10
PDF Downloads 135 135 8

Recent Climate Variability in Antarctica from Satellite-Derived Temperature Data

View More View Less
  • 1 Department of Earth and Space Sciences, University of Washington, Seattle, Washington
  • | 2 Laboratory for Hydrospheric Processes, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (TIR) and passive microwave brightness temperatures (TB). Although TIR data are limited to clear-sky conditions and TB data are a product of the temperature and emissivity of the upper ∼1 m of snow, the two datasets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. The TB variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific–South American (PSA) patterns in 500-hPa height on month-to-month time scales. ENSO variability projects onto this mode on interannual time scales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.

Additional affiliation: Quaternary Research Center, University of Washington, Seattle, Washington

Corresponding author address: David Schneider, Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195. Email: schneidd@u.washington.edu

Abstract

Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (TIR) and passive microwave brightness temperatures (TB). Although TIR data are limited to clear-sky conditions and TB data are a product of the temperature and emissivity of the upper ∼1 m of snow, the two datasets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. The TB variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific–South American (PSA) patterns in 500-hPa height on month-to-month time scales. ENSO variability projects onto this mode on interannual time scales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.

Additional affiliation: Quaternary Research Center, University of Washington, Seattle, Washington

Corresponding author address: David Schneider, Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195. Email: schneidd@u.washington.edu

Save