• Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Broecker, W. S., , D. M. Peteet, , and D. Rind, 1985: Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315 , 2126.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Ed., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16 , 661676.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , S. Manabe, , and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6 , 19932011.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic during winter: 1900–1989. J. Climate, 6 , 17431753.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , D. E. Parker, , and F. E. Kates, 1984: Worldwide marine temperature fluctuations 1856–1981. Nature, 310 , 670673.

  • Folland, C. K., , T. N. Palmer, , and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures. Nature, 320 , 602606.

  • Folland, C. K., , D. E. Parker, , A. W. Colman, , and R. Washington, 1999: Large scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño, A. Navarra, Ed., Springer, 75–102.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., , E. Manzini, , and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett.,29, 1245, doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., , C. Cooper, , C. Senior, , H. Banks, , J. M. Gregory, , T. C. Johns, , J. F. B. Mitchell, , and R. Wood, 2000: Simulation of SST, sea ice extents and ocean heat transports in a coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , and E. Tziperman, 1995: A linear thermohaline oscillator driven by stochastic atmospheric forcing. J. Climate, 8 , 24402453.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , and K. Bryan, 1997: Ensemble predictability of simulated North Atlantic inter-decadal variability. Science, 275 , 181184.

    • Search Google Scholar
    • Export Citation
  • Grötzner, A., , M. Latif, , A. Timmermann, , and R. Voss, 1999: Interannual to decadal predictability in a coupled ocean–atmosphere general circulation model. J. Climate, 12 , 26072624.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G., , K. Hasselmann, , U. Cubasch, , J. F. B. Mitchell, , E. Roeckner, , R. Voss, , and J. Waszkewitz, 1997: Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus aerosol and solar forced climate change. Climate Dyn., 13 , 613634.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation, regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in the North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 141157.

    • Search Google Scholar
    • Export Citation
  • Latif, M., 1998: Dynamics of interdecadal variability in coupled ocean–atmosphere models. J. Climate, 11 , 602624.

  • Latif, M., , E. Roeckner, , U. Mikolajewicz, , and R. Voss, 2000: Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13 , 18091813.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate, 1 , 841866.

  • Manabe, S., , and R. J. Stouffer, 1999: The role of thermohaline circulation in climate. Tellus, 51 , 91109.

  • Marotzke, J., , and P. H. Stone, 1995: Atmospheric transports, the thermohaline circulation, and flux adjustments in a simple coupled model. J. Phys. Oceanogr., 25 , 13501364.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., , H. Haak, , J. H. Jungclaus, , M. Latif, , and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5 , 91127.

    • Search Google Scholar
    • Export Citation
  • Oberhuber, J., , E. Roeckner, , M. Christoph, , M. Esch, , and M. Latif, 1998: Predicting the '97 El Niño event with a global climate model. Geophys. Res. Lett., 25 , 22732276.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Polyakov, I. V., , and M. A. Johnson, 2000: Arctic decadal and interdecadal variability. Geophys. Res. Lett., 27 , 40974100.

  • Rahmstorf, S., 1999: Shifting seas in the greenhouse? Nature, 399 , 523524.

  • Saravanan, R., , G. Danabasoglu, , S. C. Doney, , and J. C. McWilliams, 2000: Decadal variability and predictability in the midlatitude ocean–atmosphere system. J. Climate, 13 , 10731097.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., , U. Mikolajewicz, , and R. Voss, 1997: The stability of the North Atlantic thermohaline circulation in a coupled ocean–atmosphere general circulation model. Climate Dyn., 13 , 325347.

    • Search Google Scholar
    • Export Citation
  • Segschneider, J., , D. L. T. Anderson, , and T. N. Anderson, 2000: Toward the use of altimetry for operational seasonal forecasting. J. Climate, 13 , 31153128.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13 , 224230.

  • Timmermann, A., , M. Latif, , R. Voss, , and A. Groetzner, 1998: Northern Hemisphere interdecadal variability: A coupled air–sea mode. J. Climate, 11 , 19061931.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., and Coauthors, 1998: Atlantic climate variability experiment prospectus. LDEO Report, 49 pp.

  • Visbeck, M., , E. P. Chassignet, , R. G. Curry, , T. L. Delworth, , R. R. Dickson, , and G. Krahmann, 2003: The ocean's response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., No. 134, Amer. Geophys. Union, 113–145.

    • Search Google Scholar
    • Export Citation
  • WOCE, 2001: Objective 8—To determine the important processes and balances for the dynamics of the general circulation. US WOCE Implementation Rep. 13, 55 pp.

    • Search Google Scholar
    • Export Citation
  • Wood, R. A., , A. B. Keen, , J. F. B. Mitchell, , and J. M. Gregory, 1999: Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399 , 572575.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 374 374 19
PDF Downloads 152 152 19

Reconstructing, Monitoring, and Predicting Multidecadal-Scale Changes in the North Atlantic Thermohaline Circulation with Sea Surface Temperature

View More View Less
  • 1 Institut für Meereskunde, Kiel, Germany
  • | 2 Max-Planck-Institut für Meteorologie, Hamburg, Germany
  • | 3 Met Office, Hadley Centre for Climate Prediction and Research, Bracknell, Berkshire, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Sea surface temperature (SST) observations in the North Atlantic indicate the existence of strong multidecadal variability with a unique spatial structure. It is shown by means of a new global climate model, which does not employ flux adjustments, that the multidecadal SST variability is closely related to variations in the North Atlantic thermohaline circulation (THC). The close correspondence between the North Atlantic SST and THC variabilities allows, in conjunction with the dynamical inertia of the THC, for the prediction of the slowly varying component of the North Atlantic climate system. It is shown additionally that past variations of the North Atlantic THC can be reconstructed from a simple North Atlantic SST index and that future, anthropogenically forced changes in the THC can be easily monitored by observing SSTs. The latter is confirmed by another state-of-the-art global climate model. Finally, the strong multidecadal variability may mask an anthropogenic signal in the North Atlantic for some decades.

Corresponding author address: Dr. M. Latif, Institut für Meereskunde, Düsternbrooker Weg 20, D-24105 Kiel, Germany. Email: mlatif@ifm.uni-kiel.de

Abstract

Sea surface temperature (SST) observations in the North Atlantic indicate the existence of strong multidecadal variability with a unique spatial structure. It is shown by means of a new global climate model, which does not employ flux adjustments, that the multidecadal SST variability is closely related to variations in the North Atlantic thermohaline circulation (THC). The close correspondence between the North Atlantic SST and THC variabilities allows, in conjunction with the dynamical inertia of the THC, for the prediction of the slowly varying component of the North Atlantic climate system. It is shown additionally that past variations of the North Atlantic THC can be reconstructed from a simple North Atlantic SST index and that future, anthropogenically forced changes in the THC can be easily monitored by observing SSTs. The latter is confirmed by another state-of-the-art global climate model. Finally, the strong multidecadal variability may mask an anthropogenic signal in the North Atlantic for some decades.

Corresponding author address: Dr. M. Latif, Institut für Meereskunde, Düsternbrooker Weg 20, D-24105 Kiel, Germany. Email: mlatif@ifm.uni-kiel.de

Save