The Tropospheric Biennial Oscillation of the Monsoon–ENSO System in an Interactive Ensemble Coupled GCM

Renguang Wu Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
and
Ben P. Kirtman School for Computational Sciences, George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Ben P. Kirtman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The processes for the coupled tropospheric biennial oscillation involving the Indian monsoon and El Niño–Southern Oscillation (ENSO) are studied through composites of sequential wet monsoon/La Niña year followed by dry monsoon/El Niño year using observations and outputs from the Center for Ocean–Land–Atmosphere Studies (COLA) interactive ensemble coupled general circulation model. The previous composites emphasize the role of ENSO in the monsoon transition but do not exclude the possible role of factors other than ENSO.

It is found that the central eastern equatorial Pacific sea surface temperature (SST) anomalies can affect the Indian monsoon transition by two processes: (i) a shift of large-scale east–west circulation across the equatorial Indian–Pacific Oceans; and (ii) a Rossby wave–type response over the eastern north Indian Ocean–western North Pacific. The former provides the low-level anomalous moisture convergence (divergence) that preconditions the atmosphere for a wet (dry) Indian monsoon. The latter induces anomalous downward (upward) motion and low-level anomalous anticyclonic (cyclonic) circulation over the eastern north Indian Ocean–South China Sea. Associated shortwave radiation and surface evaporation changes favor the eastward shift of cold (warm) SST anomalies and in turn low-level easterly (westerly) anomalies through SST gradient changes.

The moistening (drying) of the atmosphere before a wet (dry) Indian monsoon is due to the low-level anomalous moisture convergence (divergence) that is dominated by anomalous wind convergence of the mean humidity. A large increase (decrease) in surface evaporation is observed in conjunction with the transition to a wet (dry) monsoon. The Indian Ocean SST change is mainly a response to the monsoon and ENSO-induced surface heat flux changes. The Asian land surface condition anomalies are not necessary in this coupled biennial variability of the monsoon–ENSO system in the model.

Corresponding author address: Dr. Renguang Wu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: renguang@cola.iges.org

Abstract

The processes for the coupled tropospheric biennial oscillation involving the Indian monsoon and El Niño–Southern Oscillation (ENSO) are studied through composites of sequential wet monsoon/La Niña year followed by dry monsoon/El Niño year using observations and outputs from the Center for Ocean–Land–Atmosphere Studies (COLA) interactive ensemble coupled general circulation model. The previous composites emphasize the role of ENSO in the monsoon transition but do not exclude the possible role of factors other than ENSO.

It is found that the central eastern equatorial Pacific sea surface temperature (SST) anomalies can affect the Indian monsoon transition by two processes: (i) a shift of large-scale east–west circulation across the equatorial Indian–Pacific Oceans; and (ii) a Rossby wave–type response over the eastern north Indian Ocean–western North Pacific. The former provides the low-level anomalous moisture convergence (divergence) that preconditions the atmosphere for a wet (dry) Indian monsoon. The latter induces anomalous downward (upward) motion and low-level anomalous anticyclonic (cyclonic) circulation over the eastern north Indian Ocean–South China Sea. Associated shortwave radiation and surface evaporation changes favor the eastward shift of cold (warm) SST anomalies and in turn low-level easterly (westerly) anomalies through SST gradient changes.

The moistening (drying) of the atmosphere before a wet (dry) Indian monsoon is due to the low-level anomalous moisture convergence (divergence) that is dominated by anomalous wind convergence of the mean humidity. A large increase (decrease) in surface evaporation is observed in conjunction with the transition to a wet (dry) monsoon. The Indian Ocean SST change is mainly a response to the monsoon and ENSO-induced surface heat flux changes. The Asian land surface condition anomalies are not necessary in this coupled biennial variability of the monsoon–ENSO system in the model.

Corresponding author address: Dr. Renguang Wu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: renguang@cola.iges.org

Save
  • Barnett, T. P., 1991: The interaction of multiple time scales in the tropical climate system. J. Climate, 4 , 269285.

  • Brier, G. W., 1978: The quasi-biennial oscillation and feedback processes in the atmosphere–ocean–earth system. Mon. Wea. Rev., 106 , 938946.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., and T. Li, 2000: A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci., 57 , 22092224.

  • Chung, C., and S. Nigam, 1999: Asian summer monsoon–ENSO feedback on the Cane–Zebiak model ENSO. J. Climate, 12 , 27872807.

  • Clarke, A. J., and L. Shu, 2000: Quasi-biennial winds in the far western equatorial Pacific phase-locking El Niño to the seasonal cycle. Geophys. Res. Lett., 27 , 771774.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., X. Liu, and S. V. Gorder, 1998: Dynamics of the biennial oscillation in the equatorial Indian and far western Pacific Oceans. J. Climate, 11 , 9871001.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kawamura, R., 1988: Quasi-biennial oscillation modes appearing in the tropical sea water temperature and 700 mb zonal wind. J. Meteor. Soc. Japan, 66 , 955965.

    • Search Google Scholar
    • Export Citation
  • Kawamura, R., T. Matsuura, and I. Satoshi, 2001: Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Niño–Southern Oscillation coupling. J. Geophys. Res., 106 , 46814693.

    • Search Google Scholar
    • Export Citation
  • Kawamura, R., T. Matsuura, and S. Iizuka, 2003: Equatorially symmetric impact of El Niño–Southern Oscillation on the South Asian summer monsoon system. J. Meteor. Soc. Japan, 81 , 13291352.

    • Search Google Scholar
    • Export Citation
  • Kim, K-M., and K-M. Lau, 2001: Dynamics of monsoon-induced biennial variability in ENSO. Geophys. Res. Lett., 28 , 315318.

  • Kinter III, J. L., and Coauthors, 1997: The COLA atmosphere–biosphere general circulation model. Volume 1: Formulation. COLA Tech. Rep. 51, 46 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10 , 16901704.

  • Kirtman, B. P., and J. Shukla, 2000: Influence of the Indian summer monsoon on ENSO. Quart. J. Roy. Meteor. Soc., 126 , 213239.

  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett.,29, 1367, doi:10.1029/2002GL014834.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multiseasonal prediction with a coupled tropical ocean global atmosphere system. Mon. Wea. Rev., 125 , 789808.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., Y. Fan, and E. K. Schneider, 2002: The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J. Climate, 15 , 23012320.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. P. Kirtman, 2003: Variability of the Indian Ocean: Relation to monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 129 , 16231646.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and P. J. Sheu, 1988: Annual cycle, quasi-biennial oscillation, and the Southern Oscillation in global precipitation. J. Geophys. Res., 93 , 1097510988.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13 , 42774309.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16 , 320.

  • Li, T., and Y. Zhang, 2002: Processes that determine the quasi-biennial and lower-frequency variability of the South Asian monsoon. J. Meteor. Soc. Japan, 80 , 11491163.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115 , 2750.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1993: A coupled air–sea biennial mechanism in the tropical Indian and Pacific regions: Role of the ocean. J. Climate, 6 , 3141.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1994: Coupled land–ocean–atmosphere processes and South Asian monsoon variability. Science, 266 , 263267.

  • Meehl, G. A., 1997: The south Asian monsoon and the tropospheric biennial oscillation. J. Climate, 10 , 19211943.

  • Meehl, G. A., and J. M. Arblaster, 2001: The tropospheric biennial oscillation and the Indian monsoon rainfall. Geophys. Res. Lett., 28 , 17311734.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2002a: The tropospheric biennial oscillation and Asian–Australian monsoon rainfall. J. Climate, 15 , 722744.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2002b: Indian monsoon GCM sensitivity experiments testing tropospheric biennial oscillation transition conditions. J. Climate, 15 , 923944.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and J. Loschnigg, 2003: Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J. Climate, 16 , 21382158.

    • Search Google Scholar
    • Export Citation
  • Mooley, D. A., and B. Parthasarathy, 1984: Fluctuations in All-India summer monsoon rainfall during 1871–1978. Climate Change, 6 , 287301.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1978: Air–sea interaction and the quasi-biennial oscillation. Mon. Wea. Rev., 106 , 15051508.

  • Nicholls, N., 1979: A simple air–sea interaction model. Quart. J. Roy. Meteor. Soc., 105 , 93105.

  • Ogasawara, N., A. Kitoh, T. Yasunari, and A. Noda, 1999: Tropospheric biennial oscillation of ENSO–monsoon system in the MRI coupled GCM. J. Meteor. Soc. Japan, 77 , 12471270.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, 638 pp. [Available from NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542.].

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., X. Wang, and C. F. Ropelewski, 1990: The biennial component of ENSO variability. J. Mar. Syst., 1 , 7196.

  • Ropelewski, C. F., M. S. Halpert, and X. Wang, 1992: Observed tropospheric biennial variability and its relationship to the Southern Oscillation. J. Climate, 5 , 594614.

    • Search Google Scholar
    • Export Citation
  • Shen, S-H., and K-M. Lau, 1995: Biennial oscillation associated with the East Asian summer monsoon and tropospheric sea surface temperature. J. Meteor. Soc. Japan, 73 , 105124.

    • Search Google Scholar
    • Export Citation
  • Tomita, T., and T. Yasunari, 1996: Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J. Meteor. Soc. Japan, 74 , 399413.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1975: A quasi-biennial standing wave in the Southern Hemisphere and interrelations with sea surface temperature. Quart. J. Roy. Meteor. Soc., 101 , 5574.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103 , 1424114259.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13 , 15171536.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16 , 11951211.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2003: On the impacts of the Indian summer monsoon on ENSO in a coupled GCM. Quart. J. Roy. Meteor. Soc., 129B , 34393468.

    • Search Google Scholar
    • Export Citation
  • Wu, R., Z-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16 , 37413757.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1990: Impact of Indian monsoon on the coupled atmosphere/ocean system in the tropical Pacific. Meteor. Atmos. Phys., 44 , 1941.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., and Y. Seki, 1992: Role of the Asian monsoon on the interannual variability of the global climate system. J. Meteor. Soc. Japan, 70 , 177189.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2002: The characteristics of signal versus noise SST variability in the North Pacific and tropical Pacific Ocean. COLA Tech. Rep. 128, 20 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., S-P. Weng, and J. D. Farrara, 2003: Ocean roles in the TBO transitions of the Indian–Australian monsoon system. J. Climate, 16 , 30723080.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophys. Res. Lett., 26 , 735738.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 815 560 46
PDF Downloads 172 45 2