The Interaction of the Madden–Julian Oscillation and the Arctic Oscillation

Shuntai Zhou NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland, and RS Information System, Inc., McLean, Virginia

Search for other papers by Shuntai Zhou in
Current site
Google Scholar
PubMed
Close
and
Alvin J. Miller NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Alvin J. Miller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical and extratropical interactions on the intraseasonal time scale are studied in the context of the Arctic Oscillation (AO) and the Madden–Julian oscillation (MJO). To simplify the discussion, a high (low) MJO phase is defined as strong (suppressed) convective activity over the Indian Ocean. In the Northern Hemisphere (NH) winter season, a high (low) AO phase is found more likely coupled with a high (low) MJO phase. Based on the regressed patterns and composites of various dynamical fields and quantities, possible mechanisms linking the AO and the MJO are examined. The analysis indicates that the MJO influence on extratropical circulations seems more evident than the AO influence on tropical circulations. The MJO interacts with the AO through meridional dispersion of Rossby waves in the Pacific sector. The geopotential height anomaly center over the North Pacific associated with the MJO can either reinforce or offset the AO Pacific action center. As a result, the AO pattern can be greatly affected by the MJO. When the AO and the MJO are in the same (opposite) phase, the Pacific action center becomes much stronger (weaker) than the Atlantic action center. The eddy momentum transports associated with the MJO in the Pacific sector are closely related to the retraction and extension of tropical Pacific easterlies and the subtropical Asian–Pacific jet. Because of its large scale, this regional effect is also reflected in the zonal mean state of wave transport and wave forcing on zonal wind, which in turn affects the phase of the AO.

Corresponding author address: Dr. Shuntai Zhou, NOAA/NWS/NCEP Climate Prediction Center, W/NP53, Room 808, 5200 Auth Road, Camp Springs, MD 20746. Email: shuntain.zhou@noaa.gov

Abstract

Tropical and extratropical interactions on the intraseasonal time scale are studied in the context of the Arctic Oscillation (AO) and the Madden–Julian oscillation (MJO). To simplify the discussion, a high (low) MJO phase is defined as strong (suppressed) convective activity over the Indian Ocean. In the Northern Hemisphere (NH) winter season, a high (low) AO phase is found more likely coupled with a high (low) MJO phase. Based on the regressed patterns and composites of various dynamical fields and quantities, possible mechanisms linking the AO and the MJO are examined. The analysis indicates that the MJO influence on extratropical circulations seems more evident than the AO influence on tropical circulations. The MJO interacts with the AO through meridional dispersion of Rossby waves in the Pacific sector. The geopotential height anomaly center over the North Pacific associated with the MJO can either reinforce or offset the AO Pacific action center. As a result, the AO pattern can be greatly affected by the MJO. When the AO and the MJO are in the same (opposite) phase, the Pacific action center becomes much stronger (weaker) than the Atlantic action center. The eddy momentum transports associated with the MJO in the Pacific sector are closely related to the retraction and extension of tropical Pacific easterlies and the subtropical Asian–Pacific jet. Because of its large scale, this regional effect is also reflected in the zonal mean state of wave transport and wave forcing on zonal wind, which in turn affects the phase of the AO.

Corresponding author address: Dr. Shuntai Zhou, NOAA/NWS/NCEP Climate Prediction Center, W/NP53, Room 808, 5200 Auth Road, Camp Springs, MD 20746. Email: shuntain.zhou@noaa.gov

Save
  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14 , 34953507.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. R., and R. D. Rosen, 1983: The latitude–height structure of 40–50 day variations in atmospheric angular momentum. J. Atmos. Sci., 40 , 15841591.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104 , 3093730946.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 20–50 day oscillation. J. Atmos. Sci., 45 , 17091720.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66 , 83109.

    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.”. Geophys. Res. Lett., 27 , 779782.

  • Edmon Jr., H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37 , 26002616.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. M. Wallace, V. Limpasuvan, D. W. J. Thompson, and J. R. Holton, 2000: Can ozone depletion and greenhouse warming interact to produce rapid climate change? Proc. Natl. Acad. Sci. USA, 97 , 14121417.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10 , 224244.

    • Search Google Scholar
    • Export Citation
  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Climate, 13 , 35763587.

    • Search Google Scholar
    • Export Citation
  • Kalnay, M. E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115 , 14071436.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and T. J. Phillips, 1986: Coherent fluctuations of extratropical geopotential heights and tropical convection in intraseasonal time series. J. Atmos. Sci., 43 , 11641181.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., 1987: Observed relationship between large-scale tropical convection and the tropical circulation on subseasonal time scales during Northern Hemisphere winter. J. Atmos. Sci., 44 , 25432561.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13 , 44144429.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind. J. Atmos. Sci., 28 , 702708.

  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life circle of the Madden–Julian oscillation. J. Climate, 11 , 23972403.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13 , 14511460.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., S. Zhou, and S-K. Yang, 2003: Relationship of the Arctic and Antarctic Oscillation to outgoing longwave radiation. J. Climate, 16 , 15831592.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE data. Mon. Wea. Rev., 107 , 9941013.

  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42 , 217229.

  • Quadrelli, R., and J. M. Wallace, 2002: Dependence of the structure of the Northern Hemisphere annular mode on the polarity of ENSO. Geophys. Res. Lett., 29 .2132, doi:10.1029/2002GL015807.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., D. P. Rowell, K. R. Sperber, and F. Nortley, 1999: On the predictability of the interannual behavior of the Madden–Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125 , 583609.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and R. S. Lindzen, 2000: Planetary-scale baroclinic instability and the MJO. J. Atmos. Sci., 57 , 36093626.

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84 , 3350.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. W. J. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate, 15 , 19871991.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and J. R. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39 , 722733.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., and S. J. S. Khalsa, 1990: The shift of convection from the Indian Ocean to the western Pacific Ocean during a 30–60 day oscillation. Mon. Wea. Rev., 118 , 964978.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113 , 941961.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. N. Kiladis, and P. D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54 , 14451461.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1647 788 46
PDF Downloads 562 122 4