Biophysical Feedbacks in the Tropical Pacific

Ben Marzeion Leibniz-Institut für Meereswissenschaften, Kiel, Germany

Search for other papers by Ben Marzeion in
Current site
Google Scholar
PubMed
Close
,
Axel Timmermann Leibniz-Institut für Meereswissenschaften, Kiel, Germany

Search for other papers by Axel Timmermann in
Current site
Google Scholar
PubMed
Close
,
Ragu Murtugudde ESSIC, University of Maryland, College Park, College Park, Maryland

Search for other papers by Ragu Murtugudde in
Current site
Google Scholar
PubMed
Close
, and
Fei-Fei Jin SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Fei-Fei Jin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores the influence of phytoplankton on the tropical Pacific heat budget. A hybrid coupled model for the tropical Pacific that is based on a primitive equation reduced-gravity multilayer ocean model, a dynamic ocean mixed layer, an atmospheric mixed layer, and a statistical atmosphere is used. The statistical atmosphere relates deviations of the sea surface temperature from its mean to wind stress anomalies and allows for the rectification of the annual cycle and the El Niño–Southern Oscillation (ENSO) phenomenon through the positive Bjerknes feedback. Furthermore, a nine-component ecosystem model is coupled to the physical variables of the ocean. The simulated chlorophyll concentrations can feed back onto the ocean heat budget by their optical properties, which modify solar light absorption in the surface layers. It is shown that both the surface layer concentration as well as the vertical profile of chlorophyll have a significant effect on the simulated mean state, the tropical annual cycle, and ENSO. This study supports a previously suggested hypothesis (Timmermann and Jin) that predicts an influence of phytoplankton concentration of the tropical Pacific climate mean state and its variability. The bioclimate feedback diagnosed here works as follows: Maxima in the subsurface chlorophyll concentrations lead to an enhanced subsurface warming due to the absorption of photosynthetically available shortwave radiation. This warming triggers a deepening of the mixed layer in the eastern equatorial Pacific and eventually a reduction of the surface ocean currents (Murtugudde et al.). The weakened south-equatorial current generates an eastern Pacific surface warming, which is strongly enhanced by the Bjerknes feedback. Because of the deepening of the mixed layer, the strength of the simulated annual cycle is also diminished. This in turn leads to an increase in ENSO variability.

* Current affiliation: Nansen Environmental and Remote Sensing Center, Bergen, Norway

+ Current affiliation: IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

# Current affiliation: Department of Meteorology, The Florida State University, Tallahassee, Florida

Corresponding author address: Axel Timmermann, IPRC, SOEST, University of Hawaii, 2525 Correa Rd., Honolulu, HI 96822. Email: axel@hawaii.edu

Abstract

This study explores the influence of phytoplankton on the tropical Pacific heat budget. A hybrid coupled model for the tropical Pacific that is based on a primitive equation reduced-gravity multilayer ocean model, a dynamic ocean mixed layer, an atmospheric mixed layer, and a statistical atmosphere is used. The statistical atmosphere relates deviations of the sea surface temperature from its mean to wind stress anomalies and allows for the rectification of the annual cycle and the El Niño–Southern Oscillation (ENSO) phenomenon through the positive Bjerknes feedback. Furthermore, a nine-component ecosystem model is coupled to the physical variables of the ocean. The simulated chlorophyll concentrations can feed back onto the ocean heat budget by their optical properties, which modify solar light absorption in the surface layers. It is shown that both the surface layer concentration as well as the vertical profile of chlorophyll have a significant effect on the simulated mean state, the tropical annual cycle, and ENSO. This study supports a previously suggested hypothesis (Timmermann and Jin) that predicts an influence of phytoplankton concentration of the tropical Pacific climate mean state and its variability. The bioclimate feedback diagnosed here works as follows: Maxima in the subsurface chlorophyll concentrations lead to an enhanced subsurface warming due to the absorption of photosynthetically available shortwave radiation. This warming triggers a deepening of the mixed layer in the eastern equatorial Pacific and eventually a reduction of the surface ocean currents (Murtugudde et al.). The weakened south-equatorial current generates an eastern Pacific surface warming, which is strongly enhanced by the Bjerknes feedback. Because of the deepening of the mixed layer, the strength of the simulated annual cycle is also diminished. This in turn leads to an increase in ENSO variability.

* Current affiliation: Nansen Environmental and Remote Sensing Center, Bergen, Norway

+ Current affiliation: IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

# Current affiliation: Department of Meteorology, The Florida State University, Tallahassee, Florida

Corresponding author address: Axel Timmermann, IPRC, SOEST, University of Hawaii, 2525 Correa Rd., Honolulu, HI 96822. Email: axel@hawaii.edu

Save
  • AchutaRao, K., and K. R. Sperber, 2002: Simulation of the El Niño Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • Andreasen, D., and A. C. Ravelo, 1997: Tropical Pacific Ocean thermocline depth reconstructions for the last glacial maximum. Paleoceanography, 12 , 395414.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Burgers, G., and G. J. van Oldenborgh, 2003: On the impact of local feedbacks in the central Pacific on the ENSO cycle. J. Climate, 16 , 23962407.

    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., P. G. Strutton, and M. J. McPhaden, 1998: Biological–physical coupling in the equatorial Pacific during the onset of the 1997–98 El Niño. Geophys. Res. Lett., 25 , 35433546.

    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., P. G. Strutton, G. E. Friederich, R. A. Feely, G. C. Feldman, D. G. Foley, and M. J. McPhaden, 1999: Biological and chemical response of the equatorial Pacific Ocean to the 1997–98 El Niño. Science, 286 , 21262131.

    • Search Google Scholar
    • Export Citation
  • Chen, D., L. M. Rothstein, and A. J. Busalacchi, 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24 , 21562179.

    • Search Google Scholar
    • Export Citation
  • Christian, J. R., M. A. Verschell, R. Murtugudde, A. J. Busalacchi, and C. R. McClain, 2001a: Biogeochemical modelling of the tropical Pacific Ocean. I. Seasonal and interseasonal variability. Deep-Sea Res., 49B , 509543.

    • Search Google Scholar
    • Export Citation
  • Christian, J. R., M. A. Verschell, R. Murtugudde, A. J. Busalacchi, and C. R. McClain, 2001b: Biogeochemical modelling of the tropical Pacific Ocean. II. Iron biogeochemistry. Deep-Sea Res., 49B , 545565.

    • Search Google Scholar
    • Export Citation
  • Chuey, J., D. Rea, and N. Pisias, 1987: Late pleistocene paleoclimatology of the central equatorial Pacific: A quantitive record of eolian and carbonate deposition. Quat. Res., 28 , 323339.

    • Search Google Scholar
    • Export Citation
  • Cowles, T. J., and R. T. Barber, 1977: Biological consequences of the 1975 El Niño. Science, 195 , 285287.

  • Eckert, C., 1998: On predictibility limits of ENSO. Ph.D. thesis, Max-Planck-Institut für Meteorologie, 77 pp.

  • Flügel, M., 1994: Untersuchungen zu Mechanismus und Vorhersagbarkeit von ENSO mit einem vereinfachten gekoppelten Ozean-Atmosphäre-Modell (Investigating the mechanisms and predictability of ENSO using a simplified coupled ocean–atmosphere model). Ph.D. thesis, Max-Planck-Institut für Meteorologie, 81 pp.

  • Gent, P. R., and M. A. Cane, 1989: A reduced gravity, primitive equation model of the upper equatorial ocean. J. Comput. Phys., 81 , 444480.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gu, D., and S. G. H. Philander, 1995: Secular changes of annual and interannual variability in the Tropics during the past century. J. Climate, 8 , 864876.

    • Search Google Scholar
    • Export Citation
  • Jin, F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., J. Neelin, and M. Ghil, 1994: El Niño on the Devil’s Staircase: Annual subharmonic steps to chaos. Science, 264 , 7072.

  • Kaplan, A., M. Cane, Y. Kushnir, M. Blumenthal, and B. Rajagoplan, 1998: Analysis of global sea surface temperature 1856–1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Kessler, W., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29 .2125, doi:10.1029/2002GL015924.

  • Kessler, W., L. Rothstein, and D. Chen, 1998: The annual cycle of SST in the eastern tropical Pacific, diagnosed in an ocean GCM. J. Climate, 11 , 777799.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2001: ENSIP: The El Niño Simulation Intercomparison Project. Climate Dyn., 18 , 255276.

  • Leonard, C. L., and C. R. McClain, 1996: Assessment of interannual variation (1979–1986) in pigment concentrations in the tropical Pacific using the CZCS. Int. J. Remote Sens., 17 , 721732.

    • Search Google Scholar
    • Export Citation
  • Lewis, M. R., J. J. Cullen, and T. Platt, 1983: Phytoplankton and thermal structure in the ocean: Consequences of nonuniformity in chlorophyll profile. J. Geophys. Res., 88 , 25652570.

    • Search Google Scholar
    • Export Citation
  • Lewis, M. R., M. Carr, G. C. Feldman, W. Esias, and C. McClain, 1990: Influence of penetrating solar radiation on the heat budget of the equatorial Pacific. Nature, 347 , 543546.

    • Search Google Scholar
    • Export Citation
  • Li, T., and S. G. H. Philander, 1996: On the annual cycle of the equatorial eastern Pacific. J. Climate, 9 , 29862998.

  • Liu, Z., 2002: A simple model study of the forced response of ENSO to an external periodic forcing. J. Climate, 15 , 10881098.

  • Miller, A. J., and Coauthors, 2003: Potential feedbacks between Pacific Ocean ecosystems and interdecadal climate variations. Bull. Amer. Meteor. Soc., 84 , 617633.

    • Search Google Scholar
    • Export Citation
  • Morel, A., 1988: Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters). J. Geophys. Res., 93 , 1074910768.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., R. Seager, and A. J. Busalacchi, 1996: Simulation of the tropical oceans with an ocean GCM coupled to an atmospheric mixed layer model. J. Climate, 9 , 17951815.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., S. Signorini, J. Christian, A. Busalacchi, and C. McClain, 1999: Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997–1998. J. Geophys. Res., 104 , 1836718382.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. Beauchamp, and A. Busalacchi, 2002: Effects of penetrative radiation the upper tropical ocean circulation. J. Climate, 15 , 470486.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., S. P. Kumar, J. M. Oberhuber, J. Ishizaka, K. Muneyama, and R. Frouin, 2001: Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnical ocean general circulation model. Geophys. Res. Lett., 28 , 20212024.

    • Search Google Scholar
    • Export Citation
  • Neelin, D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytical theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48 , 584606.

    • Search Google Scholar
    • Export Citation
  • Sathyendranath, S., A. D. Gouveia, S. R. Shetye, P. Ravindran, and T. Platt, 1991: Biological control of the surface temperature in the Arabian Sea. Nature, 349 , 5456.

    • Search Google Scholar
    • Export Citation
  • Schneider, E., and Z. Zhu, 1998: Sensitivity of the simulated annual cycle of sea surface temperature in the equatorial Pacific to sunlight penetration. J. Climate, 11 , 19321950.

    • Search Google Scholar
    • Export Citation
  • Seager, R., S. E. Zebiak, and M. A. Cane, 1988: A model of the tropical Pacific sea surface temperature climatology. J. Geophys. Res., 93 , 12651280.

    • Search Google Scholar
    • Export Citation
  • Stricherz, J. N., D. M. Legler, and J. J. O’Brien, 1997: Tropical Pacific Ocean. Vol. 2, TOGA Pseudo-Stress Atlas 1985–1994, COAPS Rep. 97-2, Florida State University, 163 pp.

    • Search Google Scholar
    • Export Citation
  • Strutton, P. G., and F. P. Chavez, 2004: Biological heating in the equatorial Pacific: Spatial and temporal variability. J. Climate, 17 , 10971109.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and F-F. Jin, 2002: Phytoplankton influences on tropical climate. Geophys. Res. Lett., 29 .2104, doi:10.10129/2002GL015434.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator. Science, 264 , 7274.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., C. Menkes, J-P. Boulanger, P. Delecluse, E. Guilyardi, M. McPhaden, and G. Madec, 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31 , 16491675.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. McPhaden, 2000: The surface layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30 , 29893008.

    • Search Google Scholar
    • Export Citation
  • Xie, S., 1994: On the genesis of the equatorial annual cycle. J. Climate, 7 , 20082013.

  • Xie, S., 1995: Interaction between the annual and interannual variations in the equatorial Pacific. J. Phys. Oceanogr., 25 , 19301941.

    • Search Google Scholar
    • Export Citation
  • Xie, S., 1996: Westward propagation of latitudinal asymmetry in a coupled ocean–atmosphere model. J. Atmos. Sci., 53 , 32363250.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 773 385 33
PDF Downloads 285 108 11