• Allan, R., and Coauthors, 2001: Is there an Indian Ocean Dipole, and is it independent of El Niño–Southern Oscillation? CLIVAR Exchanges, No. 3, International CLIVAR Project Office, Southampton, United Kingdom, 18–21.

  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal dipole. Deep-Sea Res., 50 , 23052330.

    • Search Google Scholar
    • Export Citation
  • Ansell, T., 2002: Air–sea interaction in the tropical Indian Ocean and links with Australian rainfall variability. Ph.D. dissertation, University of Melbourne, 272 pp.

  • Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On dipolelike variability in the tropical Indian Ocean. J. Climate, 15 , 13581369.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry, and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., R. Krishnan, and T. Yamagata, 1999: Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26 , 30013004.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., P. S. Salvekar, and T. Yamagata, 2000: Simulation of interannual SST variability in the tropical Indian Ocean. J. Climate, 13 , 34873499.

    • Search Google Scholar
    • Export Citation
  • Birkett, C., R. Murtugudde, and T. Allan, 1999: Indian Ocean climate event brings floods to East Africa’s lakes and the Sudd Marsh. Geophys. Res. Lett., 26 , 10311034.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Cai, W., M. A. Collier, H. B. Gordon, and L. J. Waterman, 2003: Strong ENSO variability and a super-ENSO pair in the CSIRO coupled climate model. Mon. Wea. Rev., 131 , 11891210.

    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., B. D. Tapley, and R. H. Stewart, 1999: Anomalous warming in the Indian Ocean coincident with El Niño. J. Geophys. Res., 104 , 30353047.

    • Search Google Scholar
    • Export Citation
  • Clark, C. O., P. J. Webster, and J. E. Cole, 2003: Interdecadal variability of the relationship between Indian Ocean zonal mode and east African coastal rainfall anomalies. J. Climate, 16 , 548554.

    • Search Google Scholar
    • Export Citation
  • Feng, M., and G. Meyers, 2003: Interannual variability in the tropical Indian Ocean: A two-year time scale of Indian Ocean Dipole. Deep-Sea Res., 50 , 22632284.

    • Search Google Scholar
    • Export Citation
  • Feng, M., G. Meyers, and S. Wijffels, 2001: Interannual upper ocean variability in the tropical Indian Ocean. Geophys. Res. Lett., 28 , 41514154.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., and S. P. O’Farrell, 1997: Transient climate change in the CSIRO coupled model with dynamic sea ice. Mon. Wea. Rev., 125 , 875907.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., and Coauthors, 2002: CSIRO Mark 3 Climate System Model. CSIRO Atmospheric Research Tech. Paper 60, 130 pp.

  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28 , 831841.

  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. D. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28 , 805830.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003: The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn., 10 , 567582.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16 , 17751790.

  • Huang, B., and J. L. Kinter III, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107 .3199, doi:10.1029/2001JC001278.

    • Search Google Scholar
    • Export Citation
  • Iizuka, S., T. Matsuura, and T. Yamagata, 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys. Res. Lett., 27 , 33693372.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: Stripped-down coupled model. J. Atmos. Sci., 54 , 830847.

  • Klein, S. A., B. J. Soden, and N-C. Lau, 1999: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

  • Kowalczyk, E. A., J. R. Garratt, and P. B. Krummel, 1991: A soil-canopy scheme for use in a numerical model of the atmosphere—1D stand alone model. CSIRO Division of Atmospheric Research Tech. Paper 23, 60 pp.

  • Kowalczyk, E. A., J. R. Garratt, and P. B. Krummel, 1994: Implementation of a soil-canopy scheme into the CSIRO GCM—Regional aspects of the model response. CSIRO Division of Atmospheric Research Tech. Paper 32, 59 pp.

  • Krishnamurthy, V., and B. P. Kirtman, 2003: Variability of the Indian Ocean: Relation to monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 129 , 16231646.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1995: Interactions of tropical oceans. J. Climate, 8 , 952964.

  • Lau, N-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16 , 320.

  • Lau, N-C., and M. J. Nath, 2004: Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J. Climate, 17 , 245265.

    • Search Google Scholar
    • Export Citation
  • Loschnigg, J., G. A. Meehl, P. J. Webster, J. M. Arblaster, and G. P. Compo, 2003: The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean zonal mode in NCAR CSM. J. Climate, 16 , 16171641.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and D. L. T. Anderson, 1984: A simple model of El Niño and the Southern Oscillation. Mon. Wea. Rev., 112 , 934946.

  • McGregor, J. L., 1993: Economical determination of departure points for semi-Lagrangian models. Mon. Wea. Rev., 121 , 221230.

  • Meehl, G. A., and J. M. Arblaster, 2002: The tropical biennial oscillation and Asian–Australian monsoon rainfall. J. Climate, 15 , 722744.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13 , 35513559.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., R. A. Davis, W. J. Ingram, and C. A. Senior, 1995: On surface temperature, greenhouse gases, and aerosols: Models and observations. J. Climate, 8 , 23642386.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., and A. J. Busalacchi, 1999: Interannual variability in the Indian Ocean. J. Climate, 12 , 23002326.

  • Murtugudde, R., J. P. McCreary, and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105 , 32953306.

    • Search Google Scholar
    • Export Citation
  • O’Farrell, S. P., 1998: Investigation of the dynamic sea ice component of a coupled atmosphere sea ice general circulation model. J. Geophys. Res., 103 , C8,. 1575115782.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., 2001: Contribution of equatorial Pacific winds to southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106 , 24072422.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Res., 49 , 15491572.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., D. Cadel, and D. Gutzler, 1986: Interannual displacement of convection and surface circulation over the equatorial Indian Ocean. Quart. J. Roy. Meteor. Soc., 112 , 4367.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev., 128 , 10701088.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole Mode events on global climate. Climate Res., 25 , 151169.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachanfran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., M. A. Alexander, and H. H. Hendon, 2004a: Remote response of the Indian Ocean to SST variations in the tropical Pacific. J. Climate, 17 , 362372.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and M. A. Alexander, 2004b: Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res., 51 , 619635.

    • Search Google Scholar
    • Export Citation
  • Smith, N. R., 1995a: The BMRC ocean thermal analysis system. Aust. Meteor. Mag., 44 , 93100.

  • Smith, N. R., 1995b: An improved system for tropical ocean subsurface temperature analyses. J. Atmos. Oceanic Technol., 12 , 850870.

  • Smith, N. R., and G. Meyers, 1996: An evaluation of expendable bathythermograph and Tropical Atmosphere–Ocean Array data for monitoring tropical ocean variability. J. Geophys. Res., 101 , 2848928501.

    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., A. L. Gordon, and Q. Zheng, 2001: Upwelling along the coast of Java and Sumatra and its relation to ENSO. Geophys. Res. Lett., 28 , 15991602.

    • Search Google Scholar
    • Export Citation
  • Udea, H., and J. Matsumoto, 2000: A possible triggering process of east–west asymmetric anomalies over the Indian Ocean in relation to 1997/1998 El Niño. J. Meteor. Soc. Japan, 78 , 803818.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled oceanic–atmospheric dynamics in the Indian Ocean during 1997–1998. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34 , 12321253.

    • Search Google Scholar
    • Export Citation
  • Xie, P., F. A. Schoot, and J. P. McCreary Jr., 2002: Structure and mechanism of South Indian Ocean climate variability. J. Climate, 15 , 864878.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, J-J. Luo, S. Masson, M. Jury, and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., No. 147, Amer. Geophys. Union, 189–212.

  • Yu, L. S., and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–1998 El Niño. Geophys. Res. Lett., 26 , 735738.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 154 81 13
PDF Downloads 79 42 3

Indian Ocean Dipolelike Variability in the CSIRO Mark 3 Coupled Climate Model

View More View Less
  • 1 CSIRO Atmospheric Research, Aspendale, Victoria, Australia
  • | 2 BMRC, Melbourne, Australia
  • | 3 CSIRO Marine Research, Hobart, Tasmania, Australia
Restricted access

Abstract

Coupled ocean–atmosphere variability in the tropical Indian Ocean is explored with a multicentury integration of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3 climate model, which runs without flux adjustment. Despite the presence of some common deficiencies in this type of coupled model, zonal dipolelike variability is produced. During July through November, the dominant mode of variability of sea surface temperature resembles the observed zonal dipole and has out-of-phase rainfall variations across the Indian Ocean basin, which are as large as those associated with the model El Niño–Southern Oscillation (ENSO). In the positive dipole phase, cold SST anomaly and suppressed rainfall south of the equator on the Sumatra–Java coast drives an anticyclonic circulation anomaly that is consistent with the steady response (Gill model) to a heat sink displaced south of the equator. The northwest–southeast tilting Sumatra–Java coast results in cold sea surface temperature (SST) centered south of the equator, which forces anticylonic winds that are southeasterly along the coast, which thus produces local upwelling, cool SSTs, and promotes more anticylonic winds; on the equator, the easterlies raise the thermocline to the east via upwelling Kelvin waves and deepen the off-equatorial thermocline to the west via off-equatorial downwelling Rossby waves. The model dipole mode exhibits little contemporaneous relationship with the model ENSO; however, this does not imply that it is independent of ENSO. The model dipole often (but not always) develops in the year following El Niño. It is triggered by an unrealistic transmission of the model’s ENSO discharge phase through the Indonesian passages. In the model, the ENSO discharge Rossby waves arrive at the Sumatra–Java coast some 6 to 9 months after an El Niño peaks, causing the majority of model dipole events to peak in the year after an ENSO warm event. In the observed ENSO discharge, Rossby waves arrive at the Australian northwest coast. Thus the model Indian Ocean dipolelike variability is triggered by an unrealistic mechanism. The result highlights the importance of properly representing the transmission of Pacific Rossby waves and Indonesian throughflow in the complex topography of the Indonesian region in coupled climate models.

Corresponding author address: Dr. Wenju Cai, CSIRO Atmospheric Research, PMB1, Aspendale, Victoria 3195, Australia. Email: Wenju.Cai@csiro.au

Abstract

Coupled ocean–atmosphere variability in the tropical Indian Ocean is explored with a multicentury integration of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3 climate model, which runs without flux adjustment. Despite the presence of some common deficiencies in this type of coupled model, zonal dipolelike variability is produced. During July through November, the dominant mode of variability of sea surface temperature resembles the observed zonal dipole and has out-of-phase rainfall variations across the Indian Ocean basin, which are as large as those associated with the model El Niño–Southern Oscillation (ENSO). In the positive dipole phase, cold SST anomaly and suppressed rainfall south of the equator on the Sumatra–Java coast drives an anticyclonic circulation anomaly that is consistent with the steady response (Gill model) to a heat sink displaced south of the equator. The northwest–southeast tilting Sumatra–Java coast results in cold sea surface temperature (SST) centered south of the equator, which forces anticylonic winds that are southeasterly along the coast, which thus produces local upwelling, cool SSTs, and promotes more anticylonic winds; on the equator, the easterlies raise the thermocline to the east via upwelling Kelvin waves and deepen the off-equatorial thermocline to the west via off-equatorial downwelling Rossby waves. The model dipole mode exhibits little contemporaneous relationship with the model ENSO; however, this does not imply that it is independent of ENSO. The model dipole often (but not always) develops in the year following El Niño. It is triggered by an unrealistic transmission of the model’s ENSO discharge phase through the Indonesian passages. In the model, the ENSO discharge Rossby waves arrive at the Sumatra–Java coast some 6 to 9 months after an El Niño peaks, causing the majority of model dipole events to peak in the year after an ENSO warm event. In the observed ENSO discharge, Rossby waves arrive at the Australian northwest coast. Thus the model Indian Ocean dipolelike variability is triggered by an unrealistic mechanism. The result highlights the importance of properly representing the transmission of Pacific Rossby waves and Indonesian throughflow in the complex topography of the Indonesian region in coupled climate models.

Corresponding author address: Dr. Wenju Cai, CSIRO Atmospheric Research, PMB1, Aspendale, Victoria 3195, Australia. Email: Wenju.Cai@csiro.au

Save