• Albert, M. R., E. F. Shultz, and F. E. Perron, 2000: Snow and firn permeability at Siple Dome, Antarctica. Ann. Glaciol., 31 , 353356.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

  • Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-69, National Severe Storms Laboratory, Norman, OK, 60 pp.

  • Bingham, A. W., and M. R. Drinkwater, 2000: Recent changes in the microwave scattering properties of the Antarctic ice sheet. IEEE Trans. Geosci. Remote Sens., 38 , 18101820.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., 1999: On the glaciological, meteorological and climatological significance of Antarctic blue-ice areas. Rev. Geophys., 37 , 337359.

    • Search Google Scholar
    • Export Citation
  • Birnie, R. V., and J. E. Gordon, 1980: Drainage systems associated with snow melt, South Shetland Islands, Antarctica. Geogr. Ann., 62A , 1-2,. 5762.

    • Search Google Scholar
    • Export Citation
  • Bøggild, C. E., J-G. Winther, K. Sand, and H. Elvehøy, 1995: Sub-surface melting in blue-ice fields in Dronning Maud Land, Antarctica: Observations and modeling. Ann. Glaciol., 21 , 162168.

    • Search Google Scholar
    • Export Citation
  • Brandt, R. E., and S. G. Warren, 1993: Solar-heating rates and temperature profiles in Antarctic snow and ice. J. Glaciol., 39 , 131,. 99110.

    • Search Google Scholar
    • Export Citation
  • Brun, E., E. Martin, V. Simon, C. Gendre, and C. Coleou, 1989: An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol., 35 , 121,. 333342.

    • Search Google Scholar
    • Export Citation
  • Casacchia, R., R. Salvatori, A. Cagnati, M. Valt, and S. Ghergo, 2002: Field reflectance of snow/ice covers at Terra Nova Bay, Antarctica. Int. J. Remote Sens., 23 , 46534667.

    • Search Google Scholar
    • Export Citation
  • Chinn, T. J., 1993: Physical hydrology of the Dry Valley lakes. Physical and Biogeochemical Processes in Antarctic Lakes, W. J. Green and E. I. Friedmann, Eds., Antarctic Research Series, Vol. 59, Amer. Geophys. Union, 1–51.

    • Search Google Scholar
    • Export Citation
  • Colbeck, S. C., 1989: Snow-crystal growth with varying surface temperatures and radiation penetration. J. Glaciol., 35 , 119,. 2329.

  • Dana, G. L., R. E. Davis, A. G. Fountain, and R. A. Wharton, 2002: Satellite-derived indices of stream discharge in Taylor Valley, Antarctica. Hydrol. Processes, 16 , 16031616.

    • Search Google Scholar
    • Export Citation
  • De Angelis, H., and P. Skvarca, 2003: Glacier surge after ice shelf collapse. Science, 299 , 15601562.

  • Dodson, R., and D. Marks, 1997: Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Res., 8 , 120.

    • Search Google Scholar
    • Export Citation
  • Fahnestock, M. A., W. Abdalati, and C. A. Shuman, 2002: Long melt seasons on ice shelves of the Antarctic Peninsula: An analysis using satellite-based microwave emission measurements. Ann. Glaciol., 34 , 127133.

    • Search Google Scholar
    • Export Citation
  • Ferrigno, J. G., J. L. Mullins, J. Stapleton, P. S. Chavez Jr., M. G. Velasco, R. S. Williams Jr., G. F. Delinski Jr., and D. Lear, 1996: Satellite image map of Antarctica. USGS Miscellaneous Field Investigations Map I-2560, U.S. Geological Survey, Washington, DC, 1 p.

  • Fountain, A. G., G. Dana, K. J. Lewis, B. H. Vaughn, and D. McKnight, 1998: Glaciers of the McMurdo Dry Valleys, Southern Victoria Land, Antarctica. Ecosystem Processes in a Polar Desert: The McMurdo Dry Valleys, Antarctica, J. Priscu, Ed., Antarctic Research Series, Vol. 2, Amer. Geophys. Union, 65–75.

    • Search Google Scholar
    • Export Citation
  • Gay, M., M. Fily, C. Genthon, M. Frezzotti, H. Oerter, and J-G. Winther, 2002: Snow grain-size measurements in Antarctica. J. Glaciol., 48 , 163,. 527535.

    • Search Google Scholar
    • Export Citation
  • Gesch, D. B., K. L. Verdin, and S. K. Greenlee, 1999: New land surface digital elevation model covers the Earth. Eos, Trans. Amer. Geophys. Union, 80 , 6970.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., S. G. Warren, and P. C. Mullen, 1994: Reflection of solar-radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res., 99 , D9,. 1866918684.

    • Search Google Scholar
    • Export Citation
  • Hardy, D., M. W. Williams, and C. Escobar, 2001: Near-surface faceted crystals, avalanches and climate in high-elevation, tropical mountains of Bolivia. Cold Reg. Sci. Technol., 33 , 2–3,. 291302.

    • Search Google Scholar
    • Export Citation
  • Jezek, K. C., 1999: Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery. Ann. Glaciol., 29 , 286290.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22 , 14871503.

    • Search Google Scholar
    • Export Citation
  • Koh, G., and R. Jordan, 1995: Sub-surface melting in a seasonal snow cover. J. Glaciol., 41 , 139,. 474482.

  • Lewis, K. J., A. G. Fountain, and G. L. Dana, 1998: Surface energy balance and meltwater production for a dry valley glacier, Taylor Valley, Antarctica. Ann. Glaciol., 27 , 603609.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17 , 13811397.

  • Liston, G. E., O. Bruland, J-G. Winther, H. Elvehøy, and K. Sand, 1999a: Meltwater production in Antarctic blue-ice areas: Sensitivity to changes in atmospheric forcing. Polar Res., 18 , 2,. 283290.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., J-G. Winther, O. Bruland, H. Elvehøy, and K. Sand, 1999b: Below-surface ice melt on the coastal Antarctic ice sheet. J. Glaciol., 45 , 150,. 273285.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., J-G. Winther, O. Bruland, H. Elvehøy, K. Sand, and L. Karlöf, 2000: Snow and blue-ice distribution patterns on the coastal Antarctic Ice Sheet. Antarct. Sci., 12 , 1,. 6979.

    • Search Google Scholar
    • Export Citation
  • Merson, R. H., 1989: An AVHRR mosaic image of Antarctica. Int. J. Remote Sens., 10 , 4–5,. 669674.

  • Orheim, O., and B. K. Lucchitta, 1990: Investigating climate change by digital analysis of blue ice extent on satellite images of Antarctica. Ann. Glaciol., 14 , 211215.

    • Search Google Scholar
    • Export Citation
  • Paige, R. A., 1968: Sub-surface melt pools in the McMurdo Ice Shelf, Antarctica. J. Glaciol., 7 , 51,. 511516.

  • Phillips, H. A., 1998: Surface meltstreams on the Amery Ice Shelf, East Antarctica. Ann. Glaciol., 27 , 177181.

  • Rau, F., and M. Braun, 2002: The regional distribution of the dry-snow zone on the Antarctic Peninsula north of 70 degrees S. Ann. Glaciol., 34 , 95100.

    • Search Google Scholar
    • Export Citation
  • Ridley, J., 1993: Surface melting on Antarctic Peninsula ice shelves detected by passive microwave sensors. Geophys. Res. Lett., 20 , 26392642.

    • Search Google Scholar
    • Export Citation
  • Scambos, T. A., C. Hulbe, M. Fahnestock, and J. Bohlander, 2000: The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46 , 154,. 516530.

    • Search Google Scholar
    • Export Citation
  • Schlatter, T. W., 1972: The local surface energy balance and subsurface temperature regime in Antarctica. J. Appl. Meteor., 11 , 10481062.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., D. Wingham, T. Payne, and P. Skvarca, 2003: Larsen ice shelf has progressively thinned. Science, 302 , 5646,. 856859.

  • Torinesi, O., M. Fily, and C. Genthon, 2003: Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors. J. Climate, 16 , 10471060.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., J-G. Winther, E. Isaksson, F. Pinglot, T. Eiken, and L. Karlof, 1999: Climate variables along a traverse line in Dronning Maud Land, East Antarctica. J. Glaciol., 45 , 150,. 295302.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., C. H. Reijmer, and R. S. W. van de Wal, 2005: A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations. J. Glaciol, ., in press.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., R. E. Brandt, and P. O. Hinton, 1998: Effect of surface roughness on bidirectional reflectance of Antarctic snow. J. Geophys. Res., 103 , E11,. 2578925807.

    • Search Google Scholar
    • Export Citation
  • West, R. D., D. P. Winebrenner, L. Tsang, and H. Rott, 1996: Microwave emission from density-stratified Antarctic firn at 6 cm wavelength. J. Glaciol., 42 , 140,. 6376.

    • Search Google Scholar
    • Export Citation
  • Winther, J-G., 1993: Studies of snow surface characteristics by Landsat TM in Dronning Maud Land, Antarctica. Ann. Glaciol., 17 , 2734.

    • Search Google Scholar
    • Export Citation
  • Winther, J-G., 1994: Spectral bi-directional reflectance of snow and glacier ice measured in Dronning Maud Land, Antarctica. Ann. Glaciol., 20 , 15.

    • Search Google Scholar
    • Export Citation
  • Winther, J-G., H. Elvehøy, C. E. Bøggild, K. Sand, and G. E. Liston, 1996: Melting, runoff and the formation of frozen lakes in a mixed snow and blue-ice field in Dronning Maud Land, Antarctica. J. Glaciol., 42 , 141,. 271278.

    • Search Google Scholar
    • Export Citation
  • Winther, J-G., M. N. Jespersen, and G. E. Liston, 2001: Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J. Glaciol., 47 , 325334.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., and S. Fiegles, 1994: Extent and duration of Antarctic surface melting. J. Glaciol., 40 , 463476.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 394 159 14
PDF Downloads 292 137 11

Antarctic Surface and Subsurface Snow and Ice Melt Fluxes

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway
Restricted access

Abstract

This paper presents modeled surface and subsurface melt fluxes across near-coastal Antarctica. Simulations were performed using a physical-based energy balance model developed in conjunction with detailed field measurements in a mixed snow and blue-ice area of Dronning Maud Land, Antarctica. The model was combined with a satellite-derived map of Antarctic snow and blue-ice areas, 10 yr (1991–2000) of Antarctic meteorological station data, and a high-resolution meteorological distribution model, to provide daily simulated melt values on a 1-km grid covering Antarctica. Model simulations showed that 11.8% and 21.6% of the Antarctic continent experienced surface and subsurface melt, respectively. In addition, the simulations produced 10-yr averaged subsurface meltwater production fluxes of 316.5 and 57.4 km3 yr−1 for snow-covered and blue-ice areas, respectively. The corresponding figures for surface melt were 46.0 and 2.0 km3 yr−1, respectively, thus demonstrating the dominant role of subsurface over surface meltwater production. In total, computed surface and subsurface meltwater production values equal 31 mm yr−1 if evenly distributed over all of Antarctica. While, at any given location, meltwater production rates were highest in blue-ice areas, total annual Antarctic meltwater production was highest for snow-covered areas due to its larger spatial extent. The simulations also showed higher interannual meltwater variations for surface melt than subsurface melt. Since most of the produced meltwater refreezes near where it was produced, the simulated melt has little effect on the Antarctic mass balance. However, the melt contribution is important for the surface energy balance and in modifying surface and near-surface snow and ice properties such as density and grain size.

Corresponding author address: Dr. Glen E. Liston, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: liston@atmos.colostate.edu

Abstract

This paper presents modeled surface and subsurface melt fluxes across near-coastal Antarctica. Simulations were performed using a physical-based energy balance model developed in conjunction with detailed field measurements in a mixed snow and blue-ice area of Dronning Maud Land, Antarctica. The model was combined with a satellite-derived map of Antarctic snow and blue-ice areas, 10 yr (1991–2000) of Antarctic meteorological station data, and a high-resolution meteorological distribution model, to provide daily simulated melt values on a 1-km grid covering Antarctica. Model simulations showed that 11.8% and 21.6% of the Antarctic continent experienced surface and subsurface melt, respectively. In addition, the simulations produced 10-yr averaged subsurface meltwater production fluxes of 316.5 and 57.4 km3 yr−1 for snow-covered and blue-ice areas, respectively. The corresponding figures for surface melt were 46.0 and 2.0 km3 yr−1, respectively, thus demonstrating the dominant role of subsurface over surface meltwater production. In total, computed surface and subsurface meltwater production values equal 31 mm yr−1 if evenly distributed over all of Antarctica. While, at any given location, meltwater production rates were highest in blue-ice areas, total annual Antarctic meltwater production was highest for snow-covered areas due to its larger spatial extent. The simulations also showed higher interannual meltwater variations for surface melt than subsurface melt. Since most of the produced meltwater refreezes near where it was produced, the simulated melt has little effect on the Antarctic mass balance. However, the melt contribution is important for the surface energy balance and in modifying surface and near-surface snow and ice properties such as density and grain size.

Corresponding author address: Dr. Glen E. Liston, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: liston@atmos.colostate.edu

Save