• Blackmon, M., and Coauthors, 2001: The Community Climate System Model. Bull. Amer. Meteor. Soc, 82 , 23572376.

  • Chen, M., R. E. Dickinson, X. Zeng, and A. N. Hahmann, 1996: Comparisons of precipitation observed over the continental United States to that simulated by a climate model. J. Climate, 9 , 22332249.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc, 123 , 357388.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. J. Climate, 14 , 11121128.

  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res, 104 , 63776402.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci, 50 , 889906.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, R. S. Hemler, and S. Fan, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14 , 34443463.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci, 54 , 23732386.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc, 106 , 447462.

  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulation: A simple cloud microphysics parameterization. J. Atmos. Sci, 55 , 32833298.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci, 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2002: Large-scale organization of moist convection in idealized aquaplanet simulations. Int. J. Numer. Methods Fluids, 39 , 843853.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci, 60 , 847864.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A cloud-resolving convection parameterization for modeling the tropical convective atmosphere. Physica D, 133 , 171178.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1996: Cloud-resolving modeling of tropical cloud systems during Phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci, 53 , 36843709.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving modeling of tropical cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci, 55 , 32643282.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev, 105 , 11711188.

  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model. J. Geophys. Res, 99 , 55515568.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and P. S. Schopf, 1984: Kelvin-wave-induced anomalous advection and the onset of surface warming in El Niño events. Mon. Wea. Rev, 112 , 923933.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci, 51 , 22252237.

  • Huffman, G. J., and Coauthors, 1997: The global precipitation climatology project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc, 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., J. M. Slingo, S. J. Woolnough, R. B. Neale, and V. D. Pope, 2001: Organization of tropical convection in a GCM with varying vertical resolution: Implications for the simulation of the Madden–Julian oscillation. Climate Dyn, 17 , 777793.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. T. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2003: Huge Pacific waves trigger wild weather half a world away. Science, 300 , 1081.

  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett, 28 , 36173620.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1998: Simulation of the tropical Pacific warm pool with the NCAR climate system model. J. Climate, 11 , 13421355.

  • Kiehl, J. T., J. J. Hack, and B. P. Briegleb, 1994: The simulated earth radiation budget of the National Center for Atmospheric Research Community Climate Model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). J. Geophys. Res, 99 , 2081520827.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. Bonnan, B. A. Boville, D. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W-K. Tao, J. Simpson, and B. Ferrier, 2003: Modeling of convective–stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor, 42 , 505527.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and P. H. Chan, 1986: The 40–50 day oscillation and the El Nino/Southern Oscillation: A new perspective. Bull. Amer. Meteor. Soc, 67 , 533534.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and P. H. Chan, 1988: Interannual and intraseasonal variations of tropical convection: A possible link between the 40-day mode and ENSO. J. Atmos. Sci, 45 , 506521.

    • Search Google Scholar
    • Export Citation
  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13 , 41594179.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 1998: A numerical study of the diurnal cycle of tropical oceanic convection. J. Atmos. Sci, 55 , 23292344.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci, 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. R. Julian, 1972: Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci, 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev, 122 , 814837.

  • Maloney, E. D., and D. L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14 , 20152034.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc, 85 , 677695.

  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett, 26 , 29612964.

  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci, 61 , 15211538.

  • Moncrieff, M. W., and E. Klinker, 1997: Mesoscale cloud systems in the tropical western Pacific as a process in general circulation models. Quart. J. Roy. Meteor. Soc, 123 , 805827.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical superclusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci, 48 , 4062.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., M. Khairoutdinov, A. Arakawa, and W. W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc, 84 , 15471564.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci, 58 , 28072819.

  • Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Program. Bull. Amer. Meteor. Soc, 64 , 779784.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Amer. Meteor. Soc, 69 , 278295.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci, 46 , 14191427.

  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc, 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn, 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., P. Inness, R. Neale, S. Woolnough, and G-Y. Yang, 2003: Scale interactions on diurnal to seasonal time scales and their relevance to model systematic errors. Ann. Geophys, 46 , 139155.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., K-M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci, 54 , 639655.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., J. Simpson, and S-T. Soong, 1987: Statistical properties of a cloud ensemble: A numerical study. J. Atmos. Sci, 44 , 31753187.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian Oscillation: A model perturbation experiment. J. Atmos. Sci, 56 , 333358.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lucas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc, 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci, 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci, 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. W. Moncrieff, 2001: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part III: Effects on the energy budget and SST. J. Atmos. Sci, 58 , 11551168.

    • Search Google Scholar
    • Export Citation
  • Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional modeling study. J. Atmos. Sci, 55 , 26932714.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., 1995: Partitioning mass, heat, and moisture budgets of explicitly simulated cumulus ensembles into convective and stratiform components. J. Atmos. Sci, 52 , 551573.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 1995: Impact of interactive radiative transfer on the macroscopic behavior of cumulus ensembles. Part II: Mechanism for cloud–radiation interactions. J. Atmos. Sci, 58 , 11551168.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., and J. Slingo, 2001: The diurnal cycle in the Tropics. Mon. Wea. Rev, 129 , 784801.

  • Yu, J-Y., and C. R. Mechoso, 1999: A discussion on the errors in the surface heat fluxes simulated by a coupled GCM. J. Climate, 12 , 416426.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 19 2
PDF Downloads 10 7 1

Explicit Convection over the Western Pacific Warm Pool in the Community Atmospheric Model

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

This paper reports on the application of the cloud-resolving convection parameterization (CRCP) to the Community Atmospheric Model (CAM), the atmospheric component of the Community Climate System Model (CCSM). The cornerstone of CRCP is the use of a two-dimensional zonally oriented cloud-system-resolving model to represent processes on mesoscales at the subgrid scale of a climate model. Herein, CRCP is applied at each climate model column over the tropical western Pacific warm pool, in a domain spanning 10°S–10°N, 150°–170°E. Results from the CRCP simulation are compared with CAM in its standard configuration.

The CRCP simulation shows significant improvements of the warm pool climate. The cloud condensate distribution is much improved as well as the bias of the tropopause height. More realistic structure of the intertropical convergence zone (ITCZ) during the boreal winter and better representation of the variability of convection are evident. In particular, the diurnal cycle of precipitation has phase and amplitude in good agreement with observations. Also improved is the large-scale organization of the tropical convection, especially superclusters associated with Madden–Julian oscillation (MJO)-like systems. Location and propagation characteristics, as well as lower-tropospheric cyclonic and upper-tropospheric anticyclonic gyres, are more realistic than in the standard CAM. Finally, the simulations support an analytic theory of dynamical coupling between organized convection and equatorial beta-plane vorticity dynamics associated with MJO-like systems.

* On leave from Maritime Branch, Institute of Meteorology and Water Management, Gdynia, Poland

+ The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Michał Z. Ziemiański, Institute of Meteorology and Water Management, Maritime Branch, Gdynia, Poland. Email: Michal.Ziemianski@imgw.pl

Abstract

This paper reports on the application of the cloud-resolving convection parameterization (CRCP) to the Community Atmospheric Model (CAM), the atmospheric component of the Community Climate System Model (CCSM). The cornerstone of CRCP is the use of a two-dimensional zonally oriented cloud-system-resolving model to represent processes on mesoscales at the subgrid scale of a climate model. Herein, CRCP is applied at each climate model column over the tropical western Pacific warm pool, in a domain spanning 10°S–10°N, 150°–170°E. Results from the CRCP simulation are compared with CAM in its standard configuration.

The CRCP simulation shows significant improvements of the warm pool climate. The cloud condensate distribution is much improved as well as the bias of the tropopause height. More realistic structure of the intertropical convergence zone (ITCZ) during the boreal winter and better representation of the variability of convection are evident. In particular, the diurnal cycle of precipitation has phase and amplitude in good agreement with observations. Also improved is the large-scale organization of the tropical convection, especially superclusters associated with Madden–Julian oscillation (MJO)-like systems. Location and propagation characteristics, as well as lower-tropospheric cyclonic and upper-tropospheric anticyclonic gyres, are more realistic than in the standard CAM. Finally, the simulations support an analytic theory of dynamical coupling between organized convection and equatorial beta-plane vorticity dynamics associated with MJO-like systems.

* On leave from Maritime Branch, Institute of Meteorology and Water Management, Gdynia, Poland

+ The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Michał Z. Ziemiański, Institute of Meteorology and Water Management, Maritime Branch, Gdynia, Poland. Email: Michal.Ziemianski@imgw.pl

Save