• Adams, J. M., and G. Piovesan, 2002: Uncertainties in the role of land vegetation in the carbon cycle. Chemosphere, 49 , 805819.

  • Berthelot, M., P. Friedlingsteing, P. Ciais, P. Monfray, J. L. Dufresne, J. L. Le Treut, and L. Fairhead, 2002: Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate–carbon cycle model. Global Biogeochem. Cycles, 16 .1084, doi:10.1029/2001GB001827.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. M. Cox, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol., 78 , 157175.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. M. Holland, A. J. Weaver, and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106 , 24412464.

    • Search Google Scholar
    • Export Citation
  • Bolin, B., and Coauthors, 2000: Global perspective. Land Use, Land-Use Change, and Forestry: A Special Report of the Intergovernmental Panel on Climate Change, R. T. Watson et al., Eds., Cambridge University Press, 23–51.

    • Search Google Scholar
    • Export Citation
  • Bopp, L., C. Le Quéré, M. Heimann, A. C. Manning, and P. Monfray, 2002: Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochem. Cycles, 16 .1022, doi:10.1029/2001GB001445.

    • Search Google Scholar
    • Export Citation
  • Bousquet, P., P. Peylin, P. Ciais, C. Le Quéré, P. Friedlingstein, and P. P. Tans, 2000: Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290 , 13421346.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. T., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration. Agric. For. Meteor., 54 , 107136.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. T., M. Ribas-Carbo, and J. A. Berry, 1992: A coupled photosynthesis–stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19 , 519538.

    • Search Google Scholar
    • Export Citation
  • Cowling, S. A., P. M. Cox, R. A. Betts, V. J. Ettwein, C. D. Jones, M. A. Maslin, and S. A. Spall, 2004: Contrasting simulated past and future responses of the Amazonian forest to atmospheric change. Philos. Trans. Roy. Soc. London, 359 , 539547.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., 2001: Description of the “TRIFFID” dynamic global vegetation model. Tech. Note 24, Hadley Centre, Met Office, 16 pp.

  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15 , 183203.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408 , 184187.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2001: Modelling vegetation and the carbon cycle as interactive elements of the climate system. Tech. Note 23, Hadley Centre, Met Office, 28 pp.

  • Cox, P. M., R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, and C D. Jones, 2004: Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78 , 137156.

    • Search Google Scholar
    • Export Citation
  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7 , 357373.

    • Search Google Scholar
    • Export Citation
  • Cramer, W., A. Bondeau, S. Schaphoff, W. Lucht, B. Smith, and S. Sitch, 2004: Tropical forests and the global carbon cycle: Impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos. Trans. Roy. Soc. London, 359 , 331343.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J-L., P. Friedlingstein, M. Berthelot, L. Bopp, P. Ciais, L. Farihead, H. Le Treut, and P. Montfray, 2002: On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 29 .1405, doi:10.1029/2001GL013777.

    • Search Google Scholar
    • Export Citation
  • Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J-M. Barnola, and V. I. Morgan, 1998: Historical CO2 record from the Law Dome DE08, DE08-2, and DSS ice cores. Trends Online: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at http://cdiac.esd.ornl.gov/trends/trends.htm.].

    • Search Google Scholar
    • Export Citation
  • Ewen, T. L., A. J. Weaver, and M. Eby, 2004: Sensitivity of the inorganic ocean carbon cycle to future climate warming in the UVic coupled model. Atmos.–Ocean, 42 , 2342.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., and Coauthors, 2001: Global temperature change and its uncertainties since 1861. Geophys. Res. Lett., 28 , 26212624.

  • Friedlingstein, P., L. Bopp, P. Ciais, J-L. Dufresne, L. Fairhead, H. Le Treut, P. Monfray, and J. Orr, 2001: Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 28 , 15431546.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., J-L. Dufresne, P. M. Cox, and P. Rayner, 2003: How positive is the feedback between future climate change and the carbon cycle? Tellus, 55B , 692700.

    • Search Google Scholar
    • Export Citation
  • Gurney, K. R., and Coauthors, 2002: Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415 , 626630.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., and Coauthors, Eds., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 892 pp.

  • Houghton, R., 2003a: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus, 55B , 378390.

    • Search Google Scholar
    • Export Citation
  • Houghton, R., 2003b: Why are estimates of the terrestrial carbon balance so different? Global Change Biol., 9 , 500509.

  • House, J. I., I. C. Prentice, N. Ramankutty, R. A. Houghton, and M. Heimann, 2003: Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus, 55B , 354363.

    • Search Google Scholar
    • Export Citation
  • Joos, F., R. Meyer, M. Bruno, and M. Leuenberger, 1999: The variability in the carbon sinks as reconstructed for the last 1000 years. Geophys. Res. Lett., 26 , 14371440.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karnosky, D. F., 2003: Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: Knowledge gaps. Environ. Int., 29 , 161169.

    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., and T. P. Whorf, 2003a: Atmospheric CO2 concentrations (ppmv) derived from flask and in situ air samples collected at the South Pole. Trends Online: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at http://cdiac.esd.ornl.gov/trends/trends.htm.].

    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., and Coauthors, 2003b: Atmospheric CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii. Trends Online: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at http://cdiac.esd.ornl.gov/trends/trends.htm.].

    • Search Google Scholar
    • Export Citation
  • Levis, S., J. A. Foley, and D. Pollard, 2000: Large-scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13 , 13131325.

  • Levy, P. E., M. G. R. Cannell, and A. D. Friend, 2004: Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Global Environ. Change, 14 , 2130.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., P. Meir, and S. Brown, 2002: Forests, carbon and global climate. Philos. Trans. Roy. Soc. London, 360 , 15671591.

  • Marland, G., T. Boden, and R. Andres, 2002: Global, regional, and national annual CO2 emissions from fossil-fuel burning, cement production, and gas flaring: 1751–1999. CDIAC NDP-030, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at http://cdiac.ornl.gov/ndps/ndp030.html.].

  • Matthews, H. D., A. J. Weaver, K. J. Meissner, N. P. Gillett, and M. Eby, 2004: Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dyn., 22 , 461479.

    • Search Google Scholar
    • Export Citation
  • McGuire, A., and Coauthors, 2001: Carbon balance of the terrestrial biosphere in the twentieth century: Analysis of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 15 , 183206.

    • Search Google Scholar
    • Export Citation
  • Meissner, K. J., A. J. Weaver, H. D. Matthews, and P. M. Cox, 2003: The role of land-surface dynamics in glacial inception: A study with the UVic Earth System Climate Model. Climate Dyn., 21 , 515537.

    • Search Google Scholar
    • Export Citation
  • Melillo, J. M., and Coauthors, 2002: Soil warming and carbon-cycle feedbacks to the climate system. Science, 298 , 21732176.

  • Nakićenović, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 570 pp.

  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary productivity from 1982 to 1999. Science, 300 , 15601563.

    • Search Google Scholar
    • Export Citation
  • Oren, R., and Coauthors, 2001: Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature, 411 , 469472.

    • Search Google Scholar
    • Export Citation
  • Orr, J., C. R. Najjar, C. L. Sabine, and F. Joos, 1991: Abiotic-HOWTO. Internal OCMIP Rep., LCSE/CEA-Saclay, 25 pp.

  • Pacanowski, R., 1995: MOM 2 Documentation User’s Guide and Reference Manual. GFDL Ocean Group Tech. Rep., NOAA/GFDL, 232 pp.

  • Plattner, G-K., F. Joos, and T. F. Stocker, 2002: Revision of the global carbon budget due to changing air–sea oxygen fluxes. Global Biogeochem. Cycles, 16 .1096, doi:10.1029/2001GB001746.

    • Search Google Scholar
    • Export Citation
  • Prather, M., and Coauthors, 2001: Atmospheric chemistry and greenhouse gases. Climate Change 2001: The Scientific Basis, J. Houghton et al., Eds., Cambridge University Press, 239–287.

    • Search Google Scholar
    • Export Citation
  • Prentice, C., and Coauthors, 2001: The carbon cycle and atmospheric carbon dioxide. Climate Change 2001: The Scientific Basis, J. Houghton et al., Eds., Cambridge University Press, 183–237.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 1987: Climate-chemical interactions and effects of changing atmospheric trace gases. Rev. Geophys., 25 , 14411482.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13 , 9971027.

    • Search Google Scholar
    • Export Citation
  • Ruddiman, W. F., 2003: The anthropogenic greenhouse era began thousands of years ago. Climate Change, 61 , 261293.

  • Saugier, B., J. Roy, and H. A. Mooney, 2001: Estimations of global terrestrial productivity: Converging toward a single number? Terrestrial Global Productivity: Past, Present and Future, J. Roy, B. Saugier, and H. Mooney, Eds., Academic Press, 543–557.

    • Search Google Scholar
    • Export Citation
  • Schimel, D. S., and Coauthors, 2001: Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414 , 169172.

    • Search Google Scholar
    • Export Citation
  • Stern, D. I., and R. K. Kaufmann, 1998: Annual estimates of global anthropogenic methane emissions: 1890–1994. Trends Online: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at http://cdiac.esd.ornl.gov/trends/trends.htm.].

    • Search Google Scholar
    • Export Citation
  • Stott, P., S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell, and G. J. Jenkins, 2000: External control of twentieth century temperature variations by natural and anthropogenic forcings. Science, 290 , 21332137.

    • Search Google Scholar
    • Export Citation
  • Stott, P., S. F. B. Tett, G. S. Jones, M. R. Allen, W. J. Ingram, and J. F. B. Mitchell, 2001: Attribution of twentieth century temperature change to natural and anthropogenic causes. Climate Dyn., 17 , 121.

    • Search Google Scholar
    • Export Citation
  • Trudinger, C. M., I. G. Enting, P. J. Rayner, and R. J. Francey, 2002: Kalman filter analysis of ice core data 2. Double deconvolution of CO2 and δ13C measurements. J. Geophys. Res., 107 .4423, doi:10.1029/2001JD001112.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic Earth System Climate Model: Model description, climatology and applications to past, present and future climates. Atmos.–Ocean, 39 , 361428.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 426 201 20
PDF Downloads 294 124 9

Terrestrial Carbon Cycle Dynamics under Recent and Future Climate Change

View More View Less
  • 1 School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
Restricted access

Abstract

The behavior of the terrestrial carbon cycle under historical and future climate change is examined using the University of Victoria Earth System Climate Model, now coupled to a dynamic terrestrial vegetation and global carbon cycle model. When forced by historical emissions of CO2 from fossil fuels and land-use change, the coupled climate–carbon cycle model accurately reproduces historical atmospheric CO2 trends, as well as terrestrial and oceanic uptake for the past two decades. Under six twenty-first-century CO2 emissions scenarios, both terrestrial and oceanic carbon sinks continue to increase, though terrestrial uptake slows in the latter half of the century. Climate–carbon cycle feedbacks are isolated by comparing a coupled model run with a run where climate and the carbon cycle are uncoupled. The modeled positive feedback between the carbon cycle and climate is found to be relatively small, resulting in an increase in simulated CO2 of 60 ppmv at the year 2100. Including non-CO2 greenhouse gas forcing and increasing the model’s climate sensitivity increase the effect of this feedback to 140 ppmv. The UVic model does not, however, simulate a switch from a terrestrial carbon sink to a source during the twenty-first century, as earlier studies have suggested. This can be explained by a lack of substantial reductions in simulated vegetation productivity due to climate changes.

Corresponding author address: Dr. Damon Matthews, Department of Geography, University of Calgary, Earth Sciences 356, 2500 University Drive N.W., Calgary, AB T2N 1N4 Canada. Email: dmatthew@ucalgary.ca; damon@ocean.seos.uvic.ca

Abstract

The behavior of the terrestrial carbon cycle under historical and future climate change is examined using the University of Victoria Earth System Climate Model, now coupled to a dynamic terrestrial vegetation and global carbon cycle model. When forced by historical emissions of CO2 from fossil fuels and land-use change, the coupled climate–carbon cycle model accurately reproduces historical atmospheric CO2 trends, as well as terrestrial and oceanic uptake for the past two decades. Under six twenty-first-century CO2 emissions scenarios, both terrestrial and oceanic carbon sinks continue to increase, though terrestrial uptake slows in the latter half of the century. Climate–carbon cycle feedbacks are isolated by comparing a coupled model run with a run where climate and the carbon cycle are uncoupled. The modeled positive feedback between the carbon cycle and climate is found to be relatively small, resulting in an increase in simulated CO2 of 60 ppmv at the year 2100. Including non-CO2 greenhouse gas forcing and increasing the model’s climate sensitivity increase the effect of this feedback to 140 ppmv. The UVic model does not, however, simulate a switch from a terrestrial carbon sink to a source during the twenty-first century, as earlier studies have suggested. This can be explained by a lack of substantial reductions in simulated vegetation productivity due to climate changes.

Corresponding author address: Dr. Damon Matthews, Department of Geography, University of Calgary, Earth Sciences 356, 2500 University Drive N.W., Calgary, AB T2N 1N4 Canada. Email: dmatthew@ucalgary.ca; damon@ocean.seos.uvic.ca

Save