• Ambrizzi, T., B. J. Hoskins, and H-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52 , 36613672.

    • Search Google Scholar
    • Export Citation
  • Bamzai, A. S., and J. Shukla, 1999: Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study. J. Climate, 12 , 31173132.

    • Search Google Scholar
    • Export Citation
  • Bamzai, A. S., and L. Marx, 2000: COLA AGCM simulation of the effect of anomalous spring snow over Eurasia on the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 126 , 25752584.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., L. Dumenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46 , 661685.

    • Search Google Scholar
    • Export Citation
  • Blanford, H. F., 1884: On the connexion of Himalayan snowfall and seasons of drought in India. Proc. Roy. Soc. London, 37 , 322.

  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40 , 16891708.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52 , 207226.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15 , 18931910.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92 , 325334.

  • Chang, A., J. L. Foster, and D. K. Hall, 1987: Nimbus-7 derived global snow cover parameters. Ann. Glaciol., 9 , 3945.

  • Chen, T-C., 2002: A North Pacific short-wave train during the extreme phases of ENSO. J. Climate, 15 , 23592376.

  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogensis. Mon. Wea. Rev., 119 , 19291953.

  • Dickson, R. R., 1984: Eurasian snow cover versus Indian monsoon rainfall—An extension of the Hahn–Shukla results. J. Climate Appl. Meteor., 23 , 171173.

    • Search Google Scholar
    • Export Citation
  • Dong, B. W., and P. J. Valdes, 1998: Modelling the Asian summer monsoon rainfall and Eurasian winter/spring snow mass. Quart. J. Roy. Meteor. Soc., 124B , 25672596.

    • Search Google Scholar
    • Export Citation
  • Fu, C., and J. O. Fletcher, 1985: The relationship between Tibet-tropical ocean thermal contrast and the interannual variability of Indian monsoon rainfall. J. Climate Appl. Meteor., 24 , 841847.

    • Search Google Scholar
    • Export Citation
  • Hahn, D. G., and J. Shukla, 1976: Apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci., 33 , 24612462.

    • Search Google Scholar
    • Export Citation
  • He, H., J. W. McGinnis, Z. Song, and M. Yanai, 1987: Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev., 115 , 19661995.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50 , 16611671.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877947.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, B. Blumenthal, and B. Rajagopolan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103C , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby-wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7 , 111125.

  • Kripalani, R. H., and A. Kulkarni, 1999: Climatology and variability of historical Soviet snow depth data: Some new perspectives in snow–Indian monsoon teleconnections. Climate Dyn., 15 , 475489.

    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., S. V. Singh, A. D. Vernekar, and V. Thapliyal, 1996: Empirical study on Nimbus-7 snow mass and Indian summer monsoon rainfall. Int. J. Climatol., 16 , 2334.

    • Search Google Scholar
    • Export Citation
  • Kumar, K., R. Kleeman, M. A. Cane, and B. Rajagopalan, 1999: Epochal changes in Indian monsoon–ENSO precursors. Geophys. Res. Lett., 26 , 7578.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and L. Peng, 1992: Dynamics of atmospheric teleconnections during the northern summer. J. Climate, 5 , 140158.

  • Li, C., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9 , 358375.

    • Search Google Scholar
    • Export Citation
  • Li, L., and T. R. Nathan, 1997: Effects of low-frequency tropical forcing on intraseasonal tropical–extratropical interactions. J. Atmos. Sci., 54 , 332346.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112 , 966989.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1994: Coupled land–ocean–atmosphere processes and South Asian monsoon variability. Science, 266 , 263267.

  • Meehl, G. A., 1997: The south Asian monsoon and the tropospheric biennial oscillation. J. Climate, 10 , 19211943.

  • Mehta, V. M., and K-M. Lau, 1997: Influence of solar irradiance on the Indian monsoon–ENSO relationship at decadal–multidecadal time scales. Geophys. Res. Lett., 24 , 159162.

    • Search Google Scholar
    • Export Citation
  • Molnar, P., and K. A. Emanuel, 1999: Temperature profiles in radiative–convective equilibrium above surfaces at different heights. J. Geophys. Res., 104 , 2426524271.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1983: The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111 , 517528.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2 , 268284.

    • Search Google Scholar
    • Export Citation
  • SankarRao, M., K. M. Lau, and S. Yang, 1996: On the relationship between Eurasian snow cover and the Asian summer monsoon. Int. J. Climatol., 16 , 605616.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40 , 13631392.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and Coauthors, 2001: Dynamical seasonal predictability of the Asian summer monsoon. Mon. Wea. Rev., 129 , 22262248.

  • Walker, G. T., 1924: Correlation in seasonal variations of weather. IV: A further study of world weather. Mem. Indian Meteor. Dept., 24 , 275332.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO—Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118 , 877926.

  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Whitham, G. B., 1974: Linear and Nonlinear Waves. John Wiley and Sons, 636 pp.

  • Yanai, M., and C. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122 , 305323.

  • Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70 , 319351.

    • Search Google Scholar
    • Export Citation
  • Yang, S., 1996: ENSO–snow–monsoon associations and seasonal–interannual predictions. Int. J. Climatol., 16 , 125134.

  • Ye, H. C., and Z. H. Bao, 2001: Lagged teleconnections between snow depth in northern Eurasia, rainfall in Southeast Asia and sea-surface temperatures over the tropical Pacific Ocean. Int. J. Climatol., 21 , 16071621.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 21
PDF Downloads 11 11 11

The Effect of ENSO on Tibetan Plateau Snow Depth: A Stationary Wave Teleconnection Mechanism and Implications for the South Asian Monsoons

View More View Less
  • 1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
  • | 2 Department of Earth and Planetary Sciences, and Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
Restricted access

Abstract

An atmospheric stationary wave teleconnection mechanism is proposed to explain how ENSO may affect the Tibetan Plateau snow depth and thereby the south Asian monsoons. Using statistical analysis, the short available record of satellite estimates of snow depth, and ray tracing, it is shown that wintertime ENSO conditions in the central Pacific may produce stationary barotropic Rossby waves in the troposphere with a northeastward group velocity. These waves reflect off the North American jet, turning equatorward, and enter the North African–Asian jet over the eastern Atlantic Ocean. Once there, the waves move with the jet across North Africa, South Asia, the Himalayas, and China. Anomalous increases in upper-tropospheric potential vorticity and increased wintertime snowfall over the Tibetan Plateau are speculated to be associated with these Rossby waves. The increased snowfall produces a larger Tibetan Plateau snowpack, which persists through the spring and summer, and weakens the intensity of the south Asian summer monsoons.

Corresponding author address: Dr. Jeffrey Shaman, Department of Earth and Planetary Sciences, Harvard University, 207 Hoffman Laboratories, 20 Oxford St., Cambridge, MA 02138. Email: jshaman@fas.harvard.edu

Abstract

An atmospheric stationary wave teleconnection mechanism is proposed to explain how ENSO may affect the Tibetan Plateau snow depth and thereby the south Asian monsoons. Using statistical analysis, the short available record of satellite estimates of snow depth, and ray tracing, it is shown that wintertime ENSO conditions in the central Pacific may produce stationary barotropic Rossby waves in the troposphere with a northeastward group velocity. These waves reflect off the North American jet, turning equatorward, and enter the North African–Asian jet over the eastern Atlantic Ocean. Once there, the waves move with the jet across North Africa, South Asia, the Himalayas, and China. Anomalous increases in upper-tropospheric potential vorticity and increased wintertime snowfall over the Tibetan Plateau are speculated to be associated with these Rossby waves. The increased snowfall produces a larger Tibetan Plateau snowpack, which persists through the spring and summer, and weakens the intensity of the south Asian summer monsoons.

Corresponding author address: Dr. Jeffrey Shaman, Department of Earth and Planetary Sciences, Harvard University, 207 Hoffman Laboratories, 20 Oxford St., Cambridge, MA 02138. Email: jshaman@fas.harvard.edu

Save