The Tropical Convective Spectrum. Part I: Archetypal Vertical Structures

Dennis J. Boccippio Earth Science Department, NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Dennis J. Boccippio in
Current site
Google Scholar
PubMed
Close
,
Walter A. Petersen University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Walter A. Petersen in
Current site
Google Scholar
PubMed
Close
, and
Daniel J. Cecil University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Daniel J. Cecil in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) “warm-season” (surface temperature greater than 10°C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%–31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.

Corresponding author address: Dr. Dennis J. Boccippio, National Space Science and Technology Center, NASA Marshall Space Flight Center SD-60, Marshall Space Flight Center, Huntsville, AL 35812. Email: Dennis.Boccippio@nasa.gov

Abstract

A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) “warm-season” (surface temperature greater than 10°C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%–31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.

Corresponding author address: Dr. Dennis J. Boccippio, National Space Science and Technology Center, NASA Marshall Space Flight Center SD-60, Marshall Space Flight Center, Huntsville, AL 35812. Email: Dennis.Boccippio@nasa.gov

Save
  • Anyamba, E., E. R. Williams, J. Susskind, A. C. Fraser-Smith, and M. Füllekrug, 2000: The manifestation of the Madden–Julian oscillation in global deep convection and in the Schumann resonance intensity. J. Atmos. Sci., 57 , 10291044.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., and Coauthors, 2000: The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. J. Atmos. Oceanic Technol., 17 , 441458.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., W. Koshak, and R. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19 , 13181332.

    • Search Google Scholar
    • Export Citation
  • Cecil, D., S. Goodman, D. Boccippio, E. Zipser, and S. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133 , 543566.

    • Search Google Scholar
    • Export Citation
  • Christian, H., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108 .4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and W. Kovari, 2002: Climatic properties of tropical precipitating convection under varying environmental conditions. J. Climate, 15 , 25972615.

    • Search Google Scholar
    • Export Citation
  • DeMott, C., and S. Rutledge, 1998a: The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J. Atmos. Sci., 55 , 27302747.

    • Search Google Scholar
    • Export Citation
  • DeMott, C., and S. Rutledge, 1998b: The vertical structure of TOGA COARE convection. Part II: Modulating influences and implications for diabatic heating. J. Atmos. Sci., 55 , 27302747.

    • Search Google Scholar
    • Export Citation
  • Fu, Y., and G. Liu, 2001: The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferred from TRMM data. J. Appl. Meteor., 40 , 21302143.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and E. N. Anagnostou, 2001: Overland precipitation estimation from TRMM passive microwave observations. J. Appl. Meteor., 40 , 13671380.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., C. D. Kummerow, and W. S. Olson, 1999: Separation of convective and stratiform precipitation using microwave brightness temperature. J. Appl. Meteor., 38 , 11951213.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., C. Kummerow, and W. Berg, 2004: Toward a global map of raindrop size distributions. Part I: Rain-type classification and its implications for validating global rainfall products. J. Hydrometeor., 5 , 831849.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and Y. Fu, 2001: The characteristics of tropical precipitation profiles as inferred from satellite radar measurements. J. Meteor. Soc. Japan, 79 , 131143.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., and E. J. Zipser, 2000: Environmental variability during TOGA COARE. J. Atmos. Sci., 57 , 23332350.

  • Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. Okamoto, J. Jones, and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39 , 20532070.

    • Search Google Scholar
    • Export Citation
  • Miller, S. W., and W. J. Emery, 1997: An automated neural network cloud classifier for use over land and ocean surfaces. J. Appl. Meteor., 36 , 13461362.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124 , 24172437.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38 , 596606.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the Tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., P. Bauer, C. D. Kummerow, Y. Hong, and W-K. Tao, 2001a: A melting-layer model for passive/active microwave remote sensing applications. Part II: Simulation of TRMM observations. J. Appl. Meteor., 40 , 11641179.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., Y. Hong, C. D. Kummerow, and J. Turk, 2001b: A texture-polarization method for estimating convective–stratiform precipitation area coverage from passive microwave radiometer data. J. Appl. Meteor., 40 , 15771591.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and W. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 11 , 26402653.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103 , 1402514040.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14 , 35663586.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. Cifelli, D. Boccippio, S. Rutledge, and C. Fairall, 2003: Convection and easterly wave structures observed in the eastern Pacific warm pool during EPIC-2001. J. Atmos. Sci., 60 , 17541773.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73 , 316.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003a: Stratiform rain in the Tropics as seen by the TRMM Precipitation Radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003b: The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteor., 42 , 15191524.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., and E. J. Zipser, 2001: Lightning and SSM/I-ice-scattering mesoscale convective systems in the global Tropics. J. Appl. Meteor., 40 , 9831002.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. Cecil, E. Zipser, and S. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the Tropics. Mon. Wea. Rev., 130 , 802824.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., J. Turk, and V. Bringi, 1991: Ice water path estimation and characterization using passive microwave radiometry. J. Appl. Meteor., 30 , 14071421.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., S. A. Rutledge, S. G. Geotis, N. O. Rennó, E. N. Rasmussen, and T. M. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.”. J. Atmos. Sci., 49 , 13861395.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107 .8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the Tropics with and without lightning. Mon. Wea. Rev., 122 , 18371851.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 39 5
PDF Downloads 108 23 2