High-Resolution Satellite Measurements of the Atmospheric Boundary Layer Response to SST Variations along the Agulhas Return Current

Larry W. O’Neill College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Larry W. O’Neill in
Current site
Google Scholar
PubMed
Close
,
Dudley B. Chelton College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Dudley B. Chelton in
Current site
Google Scholar
PubMed
Close
,
Steven K. Esbensen College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Steven K. Esbensen in
Current site
Google Scholar
PubMed
Close
, and
Frank J. Wentz Remote Sensing Systems, Santa Rosa, California

Search for other papers by Frank J. Wentz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The marine atmospheric boundary layer (MABL) response to sea surface temperature (SST) perturbations with wavelengths shorter than 30° longitude by 10° latitude along the Agulhas Return Current (ARC) is described from the first year of SST and cloud liquid water (CLW) measurements from the Advanced Microwave Scanning Radiometer (AMSR) on the Earth Observing System (EOS) Aqua satellite and surface wind stress measurements from the QuikSCAT scatterometer. AMSR measurements of SST at a resolution of 58 km considerably improves upon a previous analysis that used the Reynolds SST analyses, which underestimate the short-scale SST gradient magnitude over the ARC region by more than a factor of 5. The AMSR SST data thus provide the first quantitatively accurate depiction of the SST-induced MABL response along the ARC. Warm (cold) SST perturbations produce positive (negative) wind stress magnitude perturbations, leading to short-scale perturbations in the wind stress curl and divergence fields that are linearly related to the crosswind and downwind components of the SST gradient, respectively. The magnitudes of the curl and divergence responses vary seasonally and spatially with a response nearly twice as strong during the winter than during the summer along a zonal band between 40° and 50°S. These seasonal variations closely correspond to seasonal and spatial variability of large-scale MABL stability and surface sensible heat flux estimated from NCEP reanalysis fields. SST-induced deepening of the MABL over warm water is evident in AMSR measurements of CLW. Typical annual mean differences in cloud thickness between cold and warm SST perturbations are estimated to be about 300 m.

Corresponding author address: Larry W. O’Neill, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 COAS Admin. Bldg., Corvallis, OR, 97331-5503. Email: loneill@coas.oregonstate.edu

Abstract

The marine atmospheric boundary layer (MABL) response to sea surface temperature (SST) perturbations with wavelengths shorter than 30° longitude by 10° latitude along the Agulhas Return Current (ARC) is described from the first year of SST and cloud liquid water (CLW) measurements from the Advanced Microwave Scanning Radiometer (AMSR) on the Earth Observing System (EOS) Aqua satellite and surface wind stress measurements from the QuikSCAT scatterometer. AMSR measurements of SST at a resolution of 58 km considerably improves upon a previous analysis that used the Reynolds SST analyses, which underestimate the short-scale SST gradient magnitude over the ARC region by more than a factor of 5. The AMSR SST data thus provide the first quantitatively accurate depiction of the SST-induced MABL response along the ARC. Warm (cold) SST perturbations produce positive (negative) wind stress magnitude perturbations, leading to short-scale perturbations in the wind stress curl and divergence fields that are linearly related to the crosswind and downwind components of the SST gradient, respectively. The magnitudes of the curl and divergence responses vary seasonally and spatially with a response nearly twice as strong during the winter than during the summer along a zonal band between 40° and 50°S. These seasonal variations closely correspond to seasonal and spatial variability of large-scale MABL stability and surface sensible heat flux estimated from NCEP reanalysis fields. SST-induced deepening of the MABL over warm water is evident in AMSR measurements of CLW. Typical annual mean differences in cloud thickness between cold and warm SST perturbations are estimated to be about 300 m.

Corresponding author address: Larry W. O’Neill, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 COAS Admin. Bldg., Corvallis, OR, 97331-5503. Email: loneill@coas.oregonstate.edu

Save
  • Boebel, O., T. Rossby, J. R. E. Lutjeharms, W. Zenk, and C. Barron, 2003: Path and variability of the Agulhas Return Current. Deep-Sea Res., 50 , 3556.

    • Search Google Scholar
    • Export Citation
  • Bond, N A., 1992: Observations of planetary boundary layer structure in the eastern equatorial Pacific. J. Climate, 5 , 699706.

  • Bretherton, C S., and Coauthors, 2004: The EPIC2001 Stratocumulus study. Bull. Amer. Meteor. Soc., 85 , 967977.

  • Chelton, D B., and M G. Schlax, 2003: The accuracies of smoothed sea surface height fields constructed from tandem altimeter datasets. J. Atmos. Oceanic Technol., 20 , 12761302.

    • Search Google Scholar
    • Export Citation
  • Chelton, D B., F J. Wentz, C L. Gentemann, R A. de Szoeke, and M G. Schlax, 2000: Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett., 27 , 12391242.

    • Search Google Scholar
    • Export Citation
  • Chelton, D B., and Coauthors, 2001: Observation of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14 , 14791498.

    • Search Google Scholar
    • Export Citation
  • Chelton, D B., M G. Schlax, M H. Freilich, and R F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303 .doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W S., and S J. Devlin, 1988: Locally weighted regression: An approach to regression analysis by local fitting. J. Amer. Stat. Assoc., 83 , 596610.

    • Search Google Scholar
    • Export Citation
  • Cornillon, P., and K-A. Park, 2001: Warm core ring velocities inferred from NSCAT. Geophys. Res. Lett., 28 , 575578.

  • Cronin, M F., S-P. Xie, and H. Hashizume, 2003: Barometric pressure variations associated with eastern Pacific tropical instability waves. J. Climate, 16 , 30503057.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S P., and C S. Bretherton, 2004: Quasi-Lagrangian large eddy simulations of cross-equatorial flow in the east Pacific atmospheric boundary layer. J. Atmos. Sci., 61 , 1837–1858.

    • Search Google Scholar
    • Export Citation
  • Deser, C., J J. Bates, and S. Wahl, 1993: The influence of sea surface temperature on stratiform cloudiness along the equatorial front in the Pacific Ocean. J. Climate, 6 , 11721180.

    • Search Google Scholar
    • Export Citation
  • Freihe, C A., and Coauthors, 1991: Air–sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., 96 , 85938609.

    • Search Google Scholar
    • Export Citation
  • Hahn, C J., S G. Warren, and J. London, 1995: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Climate, 8 , 14291446.

    • Search Google Scholar
    • Export Citation
  • Hashizume, H., S-P. Xie, W T. Liu, and K. Takeuchi, 2001: Local and remote atmospheric response to tropical instability waves: A global view from space. J. Geophys. Res., 106 , 1017310185.

    • Search Google Scholar
    • Export Citation
  • Hashizume, H., S-P. Xie, M. Fujiwara, M. Shiotani, T. Watanabe, Y. Tanimoto, W T. Liu, and K. Takeuchi, 2002: Direct observations of atmospheric boundary layer response to slow SST variations over the eastern equatorial Pacific. J. Climate, 15 , 33793393.

    • Search Google Scholar
    • Export Citation
  • Hayes, S P., M J. McPhaden, and J M. Wallace, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2 , 15001506.

    • Search Google Scholar
    • Export Citation
  • Hsu, S A., 1984a: Effect of cold-air advection on internal boundary layer development over warm oceanic currents. Dyn. Atmos. Oceans, 8 , 307319.

    • Search Google Scholar
    • Export Citation
  • Hsu, S A., 1984b: Sea-breeze-like winds across the north wall of the Gulf Stream: An analytical model. J. Geophys. Res., 89 , 20252028.

    • Search Google Scholar
    • Export Citation
  • Jury, M R., 1994: A thermal front within the marine atmospheric boundary layer over the Agulhas Current south of Africa: Composite aircraft observations. J. Geophys. Res., 99 , 32973304.

    • Search Google Scholar
    • Export Citation
  • Jury, M R., and N. Walker, 1988: Marine boundary layer modification across the edge of the Agulhas Current. J. Geophys. Res., 93 , 647654.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437472.

  • Kelly, K A., S. Dickinson, M J. McPhaden, and G C. Johnson, 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28 , 24692472.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., and D P. Rogers, 1990: Numerical simulations of the response of the marine atmosphere to ocean forcing. J. Atmos. Sci., 47 , 592611.

    • Search Google Scholar
    • Export Citation
  • Kwon, B H., B. Bénech, D. Lambert, P. Durand, A. Druilhet, H. Giordani, and S. Planton, 1998: Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment. J. Geophys. Res., 103C , 2515925180.

    • Search Google Scholar
    • Export Citation
  • Large, W G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12 , 464482.

  • Lee-Thorp, A M., M. Rouault, and J. R. E. Lutjeharms, 1998: Cumulus cloud formation above the Agulhas Current. S. Afr. J. Sci., 94 , 351354.

    • Search Google Scholar
    • Export Citation
  • Lee-Thorp, A M., M. Rouault, and J. R. E. Lutjeharms, 1999: Moisture uptake in the boundary layer above the Agulhas Current: A case study. J. Geophys. Res., 104 , 14231430.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T P. Boyer, 1994: Temperature, Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Lindzen, R S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the Tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Liu, W T., and W. Tang, 1996: Equivalent neutral wind. JPL Publication 96–17, Pasadena, CA, 8 pp.

  • Liu, W T., X. Xie, P S. Polito, S-P. Xie, and H. Hashizume, 2000: Atmospheric manifestation of tropical instability waves observed by QuikSCAT and Tropical Rain Measuring Mission. Geophys. Res. Lett., 27 , 25452548.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., and R C. van Ballegooyen, 1984: Topographic control in the Agulhas Current system. Deep-Sea Res., 31 , 13211337.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., and I J. Ansorge, 2001: The Agulhas Return Current. J. Mar. Syst., 30 , 115138.

  • Lutjeharms, J. R. E., R D. Mev, and I E. Hunter, 1986: Cloud lines over the Agulhas Current. S. Afr. J. Sci., 82 , 635640.

  • Nonaka, M., and S-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16 , 14041413.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L W., D B. Chelton, and S K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal time scales. J. Climate, 16 , 23402354.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J P., and A H. Oort, 1992: Physics of Climate. Springer-Verlag, 520 pp.

  • Raymond, D J., and Coauthors, 2004: EPIC2001 and the coupled ocean–atmosphere system of the tropical east Pacific. Bull. Amer. Meteor. Soc., 85 , 13411354.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R W., and T M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R W., N A. Rayner, T M. Smith, D C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Rogers, D P., 1989: The marine boundary layer in the vicinity of an ocean front. J. Atmos. Sci., 46 , 20442062.

  • Rogers, R R., and M K. Yau, 1996: A Short Course in Cloud Physics. Butterworth-Heinemann, 290 pp.

  • Rossow, W B., and R A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Rouault, M., and A M. Lee-Thorp, 1996: Fine-time resolution measurements of atmospheric boundary layer properties between Cape Town and Marion Island. S. Afr. J. Mar. Sci., 17 , 281296.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., and J. R. E. Lutjeharms, 2000: Air–sea exchange over an Agulhas eddy at the subtropical convergence. Global Atmos. Ocean Syst., 7 , 125150.

    • Search Google Scholar
    • Export Citation
  • Schlax, M G., D B. Chelton, and M H. Freilich, 2001: Sampling errors in wind fields constructed from single and tandem scatterometer datasets. J. Atmos. Oceanic Technol., 18 , 10141036.

    • Search Google Scholar
    • Export Citation
  • Small, J R., S-P. Xie, and Y. Wang, 2003: Numerical simulation of atmospheric response to Pacific tropical instability waves. J. Climate, 16 , 37233741.

    • Search Google Scholar
    • Export Citation
  • Small, J R., S-P. Xie, Y. Wang, S K. Esbensen, and D. Vickers, 2005: Numerical simulation of boundary layer structure and cross-equatorial flow in the eastern Pacific. J. Atmos. Sci., 62 , 18121830.

    • Search Google Scholar
    • Export Citation
  • Stull, R B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sweet, W R., R. Fett, J. Kerling, and P. LaViolette, 1981: Air–sea interaction effects in the lower troposphere across the north wall of the Gulf Stream. Mon. Wea. Rev., 109 , 10421052.

    • Search Google Scholar
    • Export Citation
  • Thum, N., S K. Esbensen, D B. Chelton, and M J. McPhaden, 2002: Air–sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific. J. Climate, 15 , 33613378.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K E., W G. Large, and J G. Olson, 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20 , 17421760.

    • Search Google Scholar
    • Export Citation
  • Wai, W M., and S A. Stage, 1989: Dynamical analysis of marine atmospheric boundary layer structure near the Gulf Stream oceanic front. Quart. J. Roy. Meteor. Soc., 115 , 2944.

    • Search Google Scholar
    • Export Citation
  • Wallace, J M., T P. Mitchell, and C. Deser, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2 , 14921499.

    • Search Google Scholar
    • Export Citation
  • Wang, J., W B. Rossow, T. Uttal, and M. Rozendaal, 1999: Variability of cloud vertical structure during ASTEX observed from a combination of rawinsonde, radar, ceilometer, and satellite. Mon. Wea. Rev., 127 , 24842502.

    • Search Google Scholar
    • Export Citation
  • Warner, T T., M N. Lakhtakia, J D. Doyle, and R A. Pearson, 1990: Marine atmospheric boundary layer circulations forced by Gulf Stream sea surface temperature gradients. Mon. Wea. Rev., 118 , 309323.

    • Search Google Scholar
    • Export Citation
  • Wentz, F J., and T. Meissner, 2000: Algorithm theoretical basis document, Version 2, AMSR Ocean Algorithm. [Available online at: www.remss.com/papers/AMSR_Ocean_Algorithm_Version_2.doc.].

  • Wentz, F J., C L. Gentemann, D. Smith, and D B. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288 , 847850.

    • Search Google Scholar
    • Export Citation
  • White, W B., and J L. Annis, 2003: Coupling of extratropical mesoscale eddies in the ocean to westerly winds in the atmospheric boundary layer. J. Phys. Oceanogr., 33 , 10951107.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., M. Ishiwatari, H. Hashizume, and K. Takeuchi, 1998: Coupled ocean–atmosphere waves on the equatorial front. Geophys. Res. Lett., 25 , 38633866.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., W T. Liu, Q. Liu, and M. Nonaka, 2001: Far-reaching effects of the Hawaiian Islands on the Pacific ocean–atmosphere system. Science, 292 , 20572060.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1155 358 30
PDF Downloads 444 73 6