The Energetics of Ocean Heat Transport

Anand Gnanadesikan NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Search for other papers by Anand Gnanadesikan in
Current site
Google Scholar
PubMed
Close
,
Richard D. Slater AOS Program, Princeton University, Princeton, New Jersey

Search for other papers by Richard D. Slater in
Current site
Google Scholar
PubMed
Close
,
P. S. Swathi Center for Mathematical Modelling and Computer Simulation, Bangalore, India

Search for other papers by P. S. Swathi in
Current site
Google Scholar
PubMed
Close
, and
Geoffrey K. Vallis NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Search for other papers by Geoffrey K. Vallis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A number of recent papers have argued that the mechanical energy budget of the ocean places constraints on how the thermohaline circulation is driven. These papers have been used to argue that climate models, which do not specifically account for the energy of mixing, potentially miss a very important feedback on climate change. This paper reexamines the question of what energetic arguments can teach us about the climate system and concludes that the relationship between energetics and climate is not straightforward. By analyzing the buoyancy transport equation, it is demonstrated that the large-scale transport of heat within the ocean requires an energy source of around 0.2 TW to accomplish vertical transport and around 0.4 TW (resulting from cabbeling) to accomplish horizontal transport. Within two general circulation models, this energy is almost entirely supplied by surface winds. It is also shown that there is no necessary relationship between heat transport and mechanical energy supply.

Corresponding author address: Dr. Anand Gnanadesikan, NOAA/Geophysical Fluid Dynamics Laboratory, Forrestal Campus, U.S. Route 1, P.O. Box 308, Princeton, NJ 08542-0308. Email: Anand.Gnanadesikan@noaa.gov

Abstract

A number of recent papers have argued that the mechanical energy budget of the ocean places constraints on how the thermohaline circulation is driven. These papers have been used to argue that climate models, which do not specifically account for the energy of mixing, potentially miss a very important feedback on climate change. This paper reexamines the question of what energetic arguments can teach us about the climate system and concludes that the relationship between energetics and climate is not straightforward. By analyzing the buoyancy transport equation, it is demonstrated that the large-scale transport of heat within the ocean requires an energy source of around 0.2 TW to accomplish vertical transport and around 0.4 TW (resulting from cabbeling) to accomplish horizontal transport. Within two general circulation models, this energy is almost entirely supplied by surface winds. It is also shown that there is no necessary relationship between heat transport and mechanical energy supply.

Corresponding author address: Dr. Anand Gnanadesikan, NOAA/Geophysical Fluid Dynamics Laboratory, Forrestal Campus, U.S. Route 1, P.O. Box 308, Princeton, NJ 08542-0308. Email: Anand.Gnanadesikan@noaa.gov

Save
  • Agrawal, Y C., E A. Terray, M A. Donelan, P A. Hwang, A J. Williams, W M. Drennan, K K. Kahma, and S A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359 , 219220.

    • Search Google Scholar
    • Export Citation
  • Arbic, B K., S T. Garner, R W. Hallberg, and H L. Simmons, 2004a: The uses and accuracy of a forward global tide model: Effects of topographic drag, self-attraction and loading, and stratification. Deep-Sea Res., 51B , 30693101.

    • Search Google Scholar
    • Export Citation
  • Arbic, B K., D. MacAyeal, J X. Mitrovica, and G A. Milne, 2004b: Ocean tides and Heinrich events. Nature, 432 , 460.

  • Bryan, F., 1986: High latitude salinity effects and interhemispheric thermohaline circulations. Science, 323 , 301304.

  • Bryan, K., and L J. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84 , 25032517.

  • da Silva, A M., A C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Egbert, G D., R D. Ray, and B G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109 .C03003, doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2002: A simple model of multiple climate regimes. J. Geophys. Res., 107 .4077, doi:10.1029/2001JD001002.

  • Gent, P., and J C. McWilliams, 1990: Isopycnal mixing in ocean models. J. Phys. Oceanogr., 20 , 150155.

  • Gill, A E., and J S. Turner, 1976: A comparison of seasonal thermocline models with observation. Deep-Sea Res., 23 , 391401.

  • Gnanadesikan, A., 1999: A simple model for the structure of the oceanic pycnocline. Science, 283 , 20772079.

  • Gnanadesikan, A., R D. Slater, N. Gruber, and J L. Sarmiento, 2002: Oceanic vertical exchange and new production: A comparison between models and observations. Deep-Sea Res., 49B , 363401.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R D. Slater, and B L. Samuels, 2003: Sensitivity of ocean heat transport to subgridscale parameterizations in coarse-resolution ocean models. Geophys. Res. Lett., 30 .1967, doi:10.1029/2003GL018036.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., J P. Dunne, R M. Key, K. Matsumoto, J L. Sarmiento, R D. Slater, and P S. Swathi, 2004: Ocean ventilation and biogeochemical cycling: Understanding the physical mechanisms that give rise to realistic distributions of tracers and productivity. Global Biogeochem. Cycles, 18 .GB4010, doi:10.1029/2003GB002097.

    • Search Google Scholar
    • Export Citation
  • Gregory, J M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16 , 501515.

    • Search Google Scholar
    • Export Citation
  • Griffies, S M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28 , 831841.

  • Griffies, S M., A. Gnanadesikan, R C. Pacanowski, V D. Larichev, J K. Dukowicz, and R D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28 , 805830.

    • Search Google Scholar
    • Export Citation
  • Griffies, S M., and Coauthors, 2000: Developments in ocean climate modelling. Ocean Modell., 2 , 123192.

  • Hellermann, S., and M. Rosenstein, 1983: Normal monthly wind stress over the World Ocean with error estimates. J. Phys. Oceanogr., 13 , 10931107.

    • Search Google Scholar
    • Export Citation
  • Huang, R X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29 , 727746.

  • Huang, R X., 2004: Ocean, energy flows in. Encyclopedia of Energy, C. J. Cleveland, Ed., Vol. 4, Elsevier, 497–509.

  • Huang, R X., J R. Luyten, and H M. Stommel, 1992: Multiple equilibrium states in combined thermal and saline circulation. J. Phys. Oceanogr., 22 , 231246.

    • Search Google Scholar
    • Export Citation
  • Josey, S A., E C. Kent, and P K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12 , 28562880.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karsten, R., H. Jones, and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32 , 3954.

    • Search Google Scholar
    • Export Citation
  • Large, W G., J C. McWilliams, and S C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T P. Boyer, 1994: : Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., and Coauthors, 1998: : Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Marinov, I., 2005: Controls on the air–sea balance of carbon dioxide. Ph.D. thesis, Princeton University, 224 pp.

  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res., 13 , 707730.

  • Munk, W., and C. Wunsch, 1998: The moon and mixing: Abyssal recipes II. Deep-Sea Res., 45 , 19772009.

  • Oakey, N S., 1982: Determination of the dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12 , 256271.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R C., and S M. Griffies, 1999: The MOM3 manual. GFDL Ocean Group Tech. Rep. 4, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 680 pp.

  • Paparella, F., and W R. Young, 2002: Horizontal convection is non-turbulent. J. Fluid Mech., 466 , 205214.

  • Park, Y G., and J A. Whitehead, 1999: Rotating convection driven by differential bottom heating. J. Phys. Oceanogr., 29 , 12081220.

    • Search Google Scholar
    • Export Citation
  • Polzin, K L., 1999: A rough recipe for the energy balance of quasi-steady lee waves. Dynamics of Internal Waves II: Proc.Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 117–128.

  • Polzin, K L., J M. Toole, and R W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25 , 306328.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D., and Coauthors, 2003: From tides to mixing along the Hawaiian ridge. Science, 301 , 355357.

  • Saenko, O., and A J. Weaver, 2004: What drives heat transport in the Atlantic: Sensitivity to mechanical energy supply and buoyancy forcing in the Southern Ocean. Geophys. Res. Lett., 31 .L20305, doi:10.1029/2004GL020671.

    • Search Google Scholar
    • Export Citation
  • Saenko, O., A J. Weaver, and A. Schmittner, 2003: Atlantic deep circulation controlled by freshening in the Southern Ocean. Geophys. Res. Lett., 30 .1754, doi:10.1029/2003GL017681.

    • Search Google Scholar
    • Export Citation
  • Samelson, R M., and G K. Vallis, 1997: Large-scale circulation with small diapycnal diffusion: The two-thermocline limit. J. Mar. Res., 55 , 223275.

    • Search Google Scholar
    • Export Citation
  • Sandström, J W., 1908: Dynamische versuche mit meerwasser. Ann. Hydrogr. Marit. Meteor., 36 , 623.

  • Scott, R B., 1998: Geostrophic energetics and the small viscosity behavior of an idealized ocean circulation model. Ph.D. thesis, McGill University, 136 pp.

  • Seidov, D., and B. Haupt, 2003: Freshwater teleconnections and ocean thermohaline circulation. Geophys. Res. Lett., 30 .1329, doi:10.1029/2002GL016564.

    • Search Google Scholar
    • Export Citation
  • Simmons, H L., R W. Hallberg, and B K. Arbic, 2004: Internal wave generation in a global barocline tide model. Deep-Sea Res., 51B , 30433068.

    • Search Google Scholar
    • Export Citation
  • Stommel, H M., 1961: Thermohaline convection with 2 stable regimes of flow. Tellus, 13 , 224230.

  • Talley, L D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J R., and B L. Samuels, 1998: On the ocean’s large-scale circulation in the limit of no vertical mixing. J. Phys. Oceanogr., 28 , 18321852.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K E., and J M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Trenberth, K E., J. Olson, and W. G. Large, 1989: A global ocean wind stress climatology based on ECMWF analyses. Tech. Rep. NCAR/TN-388+STR, NCAR, Boulder, CO, 93 pp.

  • Vallis, G K., 2000: Large-scale circulation and production of stratification: Effects of wind, geometry, and diffusion. J. Phys. Oceanogr., 30 , 933954.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and R X. Huang, 2004a: Wind energy input to the Ekman layer. J. Phys. Oceanogr., 34 , 12671275.

  • Wang, W., and R X. Huang, 2004b: Wind energy input to surface waves. J. Phys. Oceanogr., 34 , 12761280.

  • Webb, D J., and N. Suginohara, 2001: The interior circulation of the ocean. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 205–214.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16 , 28752889.

  • Wunsch, C., 1998: The work done by wind on the oceanic general circulation. J. Phys. Oceanogr., 28 , 14251430.

  • Wunsch, C., 2002: What is the thermohaline circulation? Science, 298 , 11801181.

  • Wunsch, C., 2003: Determining paleoceanographic circulations, with emphasis on the Last Glacial Maximum. Quat. Sci. Rev., 22 , 371385.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R E. Ferrari, 2004: Energetics and the ocean circulation. Annu. Rev. Fluid Mech., 36 .doi:10.1146/annurev.fluid. 36.050802.122121.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 839 232 31
PDF Downloads 549 124 14