• Berger, A., 1978: A simple algorithm to compute long-term variations of daily and monthly insolation. Institut d’Astronomique et de Géophysique, Université Catholique de Lauvain, Louvain-la-Neuve, Belgium, Tech. Rep. 18.

  • Bjornsson, H., , and L. Mysak, 2001: Present-day and last-glacial maximum ocean thermohaline circulation in a zonally averaged coupled ocean–sea-ice–atmosphere model. J. Climate, 14 , 14221439.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A., , and S. Manabe, 1987: The influence of continental ice, atmospheric CO2 and land albedo on the climate of the last glacial maximum. Climate Dyn., 1 , 8799.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D., , F. Robask, , R. Keen, , and J. Bolzan, 1993: Modeled variations of precipitation over the greenland ice sheet. J. Climate, 6 , 12531268.

    • Search Google Scholar
    • Export Citation
  • Bush, A. B. G., , and S. G. H. Philander, 1998: The role of ocean-atmosphere interactions in tropical cooling during the last glacial maximum. Science, 279 , 13411344.

    • Search Google Scholar
    • Export Citation
  • Campin, J., , and H. Goosse, 1999: A parameterization of dense overflow in large-scale ocean models in z coordinate. Tellus, 51A , 412430.

    • Search Google Scholar
    • Export Citation
  • CLIMAP, 1981: Seasonal reconstruction of the earth’s surface of the last glacial maximum. Geol. Soc. Amer. Map. Chart Ser., MC-36 , 118.

    • Search Google Scholar
    • Export Citation
  • Cook, K., , and I. Held, 1988: Stationary waves of the ice age climate. J. Climate, 1 , 807819.

  • Crowley, T., 1995: Ice age terrestrial carbon changes revisited. Global Biogeochem. Cycles, 9 , 377389.

  • DeBlonde, G., , and W. Peltier, 1990: A model of late pleistocene ice sheet growth with realistic geography and simplified cryodynamics and geodynamics. Climate Dyn., 5 , 103110.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and P. Valdes, 1998: Simulation of the last glacial maximum climates using a general circulation model: Prescribed versus computed sea surface temperature. Climate Dyn., 14 , 571591.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and P. Valdes, 2000: Climates at the last glacial maximum: Influence of model horizontal resolution. J. Climate, 13 , 15541573.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., , S. Rahmstorf, , V. Petoukhov, , and M. Claussen, 1998: Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature, 391 , 351356.

    • Search Google Scholar
    • Export Citation
  • Gent, P., , and J. McWilliams, 1990: Isopycnal mixing in ocean general circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Goosse, H., , and T. Fichefet, 1999: Importance of ice-ocean interactions for the global ocean circulation: A model study. J. Geophys. Res., 104 , C10,. 2333723355.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , E. Deleersnijder, , T. Fichefet, , and M. England, 1999: Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. J. Geophys. Res., 104 , C6,. 1368113695.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , F. Selten, , R. Haarsma, , and J. Opsteegh, 2002: Large sea-ice volume anomalies simulated in a coupled climate model. Climate Dyn., 10 .doi:10.1007/s00382-002-0290-4.

    • Search Google Scholar
    • Export Citation
  • Hall, N., , B J. Hoskins, , P. Valdes, , and C. Senior, 1994: Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart. J. Meteor. Soc., 120 , 12091230.

    • Search Google Scholar
    • Export Citation
  • Hall, N., , B. Dong, , and P. Valdes, 1996: Atmospheric equilibrium, instability and energy transport at the last glacial maximum. Climate Dyn., 12 , 497511.

    • Search Google Scholar
    • Export Citation
  • Held, I., , and M. Suarez, 1978: A two-level primitive equation atmosphere model designed for climate sensitivity experiments. J. Atmos. Sci., 35 , 206229.

    • Search Google Scholar
    • Export Citation
  • Hewitt, C D., , A. Broccoli, , J. Mitchell, , and R J. Stouffer, 2001: A coupled model of the last glacial maximum: Was part of the North Atlantic relatively warm? Geophys. Res. Lett., 28 , 15711574.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B J., , and P J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47 , 18541864.

  • Hoskins, B J., , I. James, , and G. White, 1983: The shape, propagation and mean flow interaction of large scale weather systems. J. Atmos. Sci., 40 , 15951612.

    • Search Google Scholar
    • Export Citation
  • Jeffreys, H., 1926: On the dynamics of geostrophic winds. Quart. J. Roy. Meteor. Soc., 52 , 85104.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kapsner, W., , R. Alley, , C. Schuman, , S. Anandakrishnan, , and P. Grootes, 1995: Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18 000 years. Nature, 373 , 5254.

    • Search Google Scholar
    • Export Citation
  • Kim, S., , G. Flato, , and G. Boer, 2003: A coupled climate model simulation of the last glacial maximum. Part 2: Approach to equilibrium. Climate Dyn., 20 , 635661.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., , S. Muakami, , and H. Koide, 2001: A simulation of the Last Glacial Maximum with a coupled atmosphere-ocean GCM. Geophys. Res. Lett., 28 , 22212224.

    • Search Google Scholar
    • Export Citation
  • Kohfeld, K., , and S. Harrison, 2000: How well can we simulate past climates? Evaluating the models using palaeoenvironmental datasets. Quat. Sci. Rev., 19 , 321346.

    • Search Google Scholar
    • Export Citation
  • Kuo, H., 1956: Forced and free meridional circulations in the atmosphere. J. Meteor., 13 , 561568.

  • Lau, N., , and M. Nath, 1996: The role of the “atmospheric bridge” in linking tropical pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R., , and B. Farrell, 1980: A simple approximate result for maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37 , 16481654.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , S. Shin, , B. Otto-Bliesner, , J. Kutzbach, , and E. Brady, 2002: Tropical cooling at the last glacial maximum and extratropical ocean ventilation. Geophys. Res. Lett., 29 .1409, doi:10.1029/2001GL013938.

    • Search Google Scholar
    • Export Citation
  • MacAyeal, D., 1993: Binge/purge oscillations of the laurentide ice sheet as a cause of the North Atlantic’s heinrich events. Paleoceanography, 8 , 775784.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and F. Molteni, 1993: Toward a dynamic understanding of planetary-scale flow regimes. J. Atmos. Sci., 50 , 17921818.

  • Marshall, S., , and G. Clarke, 1999: Modeling North American freshwater runoff through the last glacial cycle. Quat. Res., 52 , 300315.

  • Mellor, G., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Opsteegh, J., , R. Haarsma, , F. Selten, , and A. Kattenberg, 1998: ECBILT: A dynamic alternative to mixed boundary conditions in ocean models. Tellus, 50A , 348367.

    • Search Google Scholar
    • Export Citation
  • Peltier, W., 1994: Ice age paleotopography. Science, 265 , 195201.

  • Peltier, W., , and L. Solheim, 2004: The climate of the earth at last glacial maximum: Statistical equilibrium state a mode of internal variability. Quat. Sci Rev., 89 , 335357.

    • Search Google Scholar
    • Export Citation
  • Pflaumann, U., and Coauthors, 2003: Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography, 18 .1065, doi:10.1029/2002PA000774.

    • Search Google Scholar
    • Export Citation
  • Rind, D., 1987: Components of the ice age circulation. J. Geophys. Res., 92 , 42414281.

  • Sarnthein, M., , U. Pflaumann, , and M. Weinelt, 2003: Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates. Paleoceanography, 18 .1047, doi:10.1029/2002PA000771.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., , M. Yoshimori, , and A. Weaver, 2002: Instability of the glacial climate in a model of the ocean-atmosphere-cryosphere system. Science, 295 , 14891493.

    • Search Google Scholar
    • Export Citation
  • Shin, S I., , Z. Liu, , B. L. O. Bliesner, , E. C. Brady, , J E. Kutzbach, , and S P. Harrison, 2003: A simulation of the Last Glacial Maximum climate using the NCAR CSM. Climate Dyn., 20 , 127151.

    • Search Google Scholar
    • Export Citation
  • Shinn, R., , and E. Barron, 1989: Climate sensitivity to continental ice-sheet size and configuration. J. Climate, 2 , 15171537.

  • Stendel, M., , and E. Roeckner, 1998: Impacts of horizontal model resolution on simulated climate statistics in ECHAM. Max Planck Institute of Meteorology, Rep. 253, 57 pp.

  • Stocker, T F., 1998: The seesaw effect. Science, 286 , 6162.

  • Timmermann, A., , F. Justino, , F-F. Jin, , and H. Goosse, 2004: Surface temperature control in the North and tropical Pacific during the last glacial maximum. Climate Dyn., 23 , 353370.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., , and N-C. Lau, 1985: On the role of barotropic energy conversion in the general circulation. Advances in Geophysics, Vol. A28, Academic Press, 33–74.

  • Xie, T., , and C. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 1
PDF Downloads 37 37 0

Synoptic Reorganization of Atmospheric Flow during the Last Glacial Maximum

View More View Less
  • 1 Leibniz Institut für Meereswissenschaften, IfM-GEOMAR, Kiel, Germany
  • | 2 IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 3 Leibniz Institut für Meereswissenschaften, IfM-GEOMAR, Kiel, Germany
  • | 4 Universidade Federal de Campina Grande, DCA-UFCG, Bodocongó, Campo Grande, Brazil
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A coupled global atmosphere–ocean model of intermediate complexity is used to study the influence of glacial boundary conditions on the atmospheric circulation during the Last Glacial Maximum in a systematical manner. A web of atmospheric interactions is disentangled, which involves changes in the meridional temperature gradient and an associated modulation of the atmospheric baroclinicity. This in turn drives anomalous transient eddy momentum fluxes that feed back onto the zonal mean circulation. Moreover, the modified transient activity (weakened in the North Pacific and strengthened in the North Atlantic) leads to a meridional reorganization of the atmospheric heat transport, thereby feeding back onto the meridional temperature structure. Furthermore, positive barotropic conversion and baroclinic production rates over the Laurentide ice sheets and the far eastern North Pacific have the tendency to decelerate the westerlies, thereby feeding back to the stationary wave changes triggered by orographic forcing.

+ Current affiliation: Department of Atmospheric Physics, University of Toronto, Toronto, Ontario, Canada

Corresponding author address: Dr. Flávio Justino, Department of Atmospheric Physics, University of Toronto, Toronto, ON M5S 1A7, Canada. Email: fjustino@atmosp.physics.utoronto.ca

Abstract

A coupled global atmosphere–ocean model of intermediate complexity is used to study the influence of glacial boundary conditions on the atmospheric circulation during the Last Glacial Maximum in a systematical manner. A web of atmospheric interactions is disentangled, which involves changes in the meridional temperature gradient and an associated modulation of the atmospheric baroclinicity. This in turn drives anomalous transient eddy momentum fluxes that feed back onto the zonal mean circulation. Moreover, the modified transient activity (weakened in the North Pacific and strengthened in the North Atlantic) leads to a meridional reorganization of the atmospheric heat transport, thereby feeding back onto the meridional temperature structure. Furthermore, positive barotropic conversion and baroclinic production rates over the Laurentide ice sheets and the far eastern North Pacific have the tendency to decelerate the westerlies, thereby feeding back to the stationary wave changes triggered by orographic forcing.

+ Current affiliation: Department of Atmospheric Physics, University of Toronto, Toronto, Ontario, Canada

Corresponding author address: Dr. Flávio Justino, Department of Atmospheric Physics, University of Toronto, Toronto, ON M5S 1A7, Canada. Email: fjustino@atmosp.physics.utoronto.ca

Save