• Aber, J D., , A. Magill, , R. Boone, , J M. Melillo, , and P A. Steudler, 1993: Plant and soil responses to three years of chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol. Appl., 3 , 156166.

    • Search Google Scholar
    • Export Citation
  • Abramopoulos, F., , C. Rosenzweig, , and B. Choudhury, 1988: Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration. J. Climate, 1 , 921941.

    • Search Google Scholar
    • Export Citation
  • Amthor, J S., , M L. Goulden, , J W. Munger, , and S C. Wofsy, 1994: Testing a mechanistic model of forest-canopy mass and energy exchange using eddy correlation: Carbon dioxide and ozone uptake by a mixed oak–maple stand. Aust. J. Plant Physiol., 21 , 623651.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., , C A. Vogel, , and B. Hall, 1997: Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. J. Geophys. Res., 102 , D24,. 2893928952.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82 , 24152434.

    • Search Google Scholar
    • Export Citation
  • Ball, J T., , I E. Woodrow, , and J A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, Vol. 4, J. Biggins, Ed., Martinus Nijhoff Publishers, 221–224.

    • Search Google Scholar
    • Export Citation
  • Berbigier, P., , J-M. Bonnefond, , and P. Mellmann, 2001: CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agric. For. Meteor., 108 , 183197.

    • Search Google Scholar
    • Export Citation
  • Bernacchi, C J., , E L. Singsaas, , C. Pimental, , A R. Portis Jr., , and S P. Long, 2001: Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ., 24 , 253259.

    • Search Google Scholar
    • Export Citation
  • Bonan, G B., 1995: Land–atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model. J. Geophys. Res., 100 , D2,. 28172831.

    • Search Google Scholar
    • Export Citation
  • Buckley, T N., , K A. Mott, , and G D. Farquhar, 2003: A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ., 26 , 17671785.

    • Search Google Scholar
    • Export Citation
  • Carswell, F E., and Coauthors, 2000: Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol., 20 , 179186.

  • Choudhury, B J., , R J. Reginato, , and S B. Idso, 1986: An analysis of infrared temperature observations over wheat and calculation of latent heat flux. Agric. For. Meteor., 37 , 7588.

    • Search Google Scholar
    • Export Citation
  • Clark, D A., 2004: Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philos. Trans. Roy. Soc. London, 359B , 477491.

    • Search Google Scholar
    • Export Citation
  • Cowan, I R., , and G D. Farquhar, 1977: Stomatal function in relation to leaf metabolism and environment. Proc. Society for Experimental Biology Symp.: Integration of Activity in the Higher Plant, Vol. 31, Durham, United Kingdom, Society for Experimental Biology, 471–505.

  • Cox, P M., , R A. Betts, , C B. Bunton, , R. L. H. Essery, , P R. Rowntree, , and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15 , 183203.

    • Search Google Scholar
    • Export Citation
  • Davidson, E A., , E. Belk, , and R D. Boone, 1998: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol., 4 , 217227.

    • Search Google Scholar
    • Export Citation
  • Deardoff, J W., 1967: Empirical evidence of the eddy coefficient for heat upon stability above the lowest 50 m. J. Appl. Meteor., 6 , 631643.

    • Search Google Scholar
    • Export Citation
  • Diaz, H F., , and G N. Kiladis, 1992: Atmospheric teleconnections associated with the extreme phases of the Southern Oscillation. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 7–28.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R E., and Coauthors, 2002: Nitrogen controls on climate model evapotranspiration. J. Climate, 15 , 278295.

  • Farquhar, G D., , S. von Caemmerer, , and J A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149 , 7890.

    • Search Google Scholar
    • Export Citation
  • Foley, J A., , I C. Prentice, , N. Ramankutty, , S. Levis, , D. Pollard, , S. Sitch, , and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10 , 603628.

    • Search Google Scholar
    • Export Citation
  • Forstreuter, M., 1998: What can we learn from microcosms? European Forests and Global Change: The Likely Impact of Rising CO2 and Temperature, P. G. Jarvis, Ed., Cambridge University Press, 274–292.

    • Search Google Scholar
    • Export Citation
  • Friend, A D., 1993: The prediction and physiological significance of tree height. Vegetation Dynamics and Global Change, A. M. Solomon and H. H. Shugart, Eds., Chapman and Hall, 101–115.

    • Search Google Scholar
    • Export Citation
  • Friend, A D., 1995: PGEN: An integrated model of leaf photosynthesis, transpiration, and conductance. Ecol. Modell., 77 , 233255.

  • Friend, A D., 2001: Modelling canopy CO2 fluxes: Are ‘big-leaf’ simplifications justified? Global Ecol. Biogeogr., 10 , 603619.

  • Friend, A D., , and P M. Cox, 1995: Modelling the effects of atmospheric CO2 on vegetation–atmospheric interactions. Agric. For. Meteor., 73 , 285295.

    • Search Google Scholar
    • Export Citation
  • Friend, A D., , H H. Shugart, , and S W. Running, 1993: A physiology-based gap model of forest dynamics. Ecology, 74 , 792797.

  • Friend, A D., , A K. Stevens, , R G. Knox, , and M. G. R. Cannell, 1997: A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol. Modell., 95 , 249287.

    • Search Google Scholar
    • Export Citation
  • Goulden, M L., , J W. Munger, , S-M. Fan, , B C. Daube, , and S C. Wofsy, 1996: Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biol., 2 , 169182.

    • Search Google Scholar
    • Export Citation
  • Hales, K., , J D. Neelin, , and N. Zeng, 2004: Sensitivity of tropical land climate to leaf area index: Role of surface conductance versus albedo. J. Climate, 17 , 14591473.

    • Search Google Scholar
    • Export Citation
  • Hanan, N P., , G. Burba, , S B. Verma, , J A. Berry, , A. Suyker, , and E A. Walter-Shea, 2002: Inversion of net ecosystem CO2 flux measurements for estimation of canopy PAR absorption. Global Change Biol., 8 , 565574.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , G. Russell, , D. Rind, , P. Stone, , A. Lacis, , S. Lebedeff, , R. Ruedy, , and L. Travis, 1983: Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev., 111 , 609662.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2002: Climate forcings in Goddard Institute for Space Studies SI2000 simulations. J. Geophys. Res., 107 .4347, doi:10.1029/2001JD001143.

    • Search Google Scholar
    • Export Citation
  • Hetherington, A M., , and F I. Woodward, 2003: The role of stomata in sensing and driving environmental change. Nature, 424 , 901908.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M P., , A. Kumar, , and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10 , 17691786.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M P., , J W. Hurrell, , and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292 , 9092.

  • Hollinger, D Y., , F M. Kelliher, , E-D. Schulze, , and B. M. M. Köstner, 1994: Coupling of tree transpiration to atmospheric turbulence. Nature, 371 , 6062.

    • Search Google Scholar
    • Export Citation
  • Huffman, G J., , and D T. Bolvin, cited. 2005: GPCP Version 2 Combined Precipitation Data Set documentation. [Available online at http://www1.ncdc.noaa.gov/pub/data/gpcp/v2/documentation/V2_doc.].

  • Huffman, G J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Jacobs, C. M. J., 1994: Direct impact of atmospheric CO2 enrichment on regional transpiration. Ph.D. thesis, Wageningen Agricultural University, 179 pp.

  • Jacobs, C. M. J., , B. M. M. van den Hurk, , and H. A. R. de Bruin, 1996: Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions. Agric. For. Meteor., 80 , 111134.

    • Search Google Scholar
    • Export Citation
  • Jarvis, A J., , and W J. Davies, 1998: The coupled response of stomatal conductance to photosynthesis and transpiration. J. Exp. Bot., 49 , 399406.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273B , 593610.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P G., , and K G. McNaughton, 1986: Stomatal control of transpiration: Scaling up from leaf to region. Adv. Ecol. Res., 15 , 149.

    • Search Google Scholar
    • Export Citation
  • Jones, H G., 1992: Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2d ed. Cambridge University Press, 452 pp.

    • Search Google Scholar
    • Export Citation
  • Koch, G W., , S C. Sillett, , G M. Jennings, , and S D. Davis, 2004: The limits to tree height. Nature, 428 , 851854.

  • Kull, O., , and B. Kruijt, 1998: Leaf photosynthetic light response: A mechanistic model for scaling photosynthesis to leaves and canopies. Funct. Ecol., 12 , 767777.

    • Search Google Scholar
    • Export Citation
  • Loustau, D., , and H. Cochard, 1991: Utilisation d’une chambre de transpiration portable pour l’estimation de l’evapotranspiration d’un sous-bois de pin maritime à molinie (Molinia coerulea L. Moench). Ann. Sci. For., 48 , 2945.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., , A D. Nobre, , J. Grace, , B. Kruijt, , M. G. P. Pereira, , A. Culf, , and S. Scott, 1998: Carbon dioxide transfer over a Central Amazonian rain forest. J. Geophys. Res., 103 , D24,. 3159331612.

    • Search Google Scholar
    • Export Citation
  • Matthews, E., 1983: Global vegetation and land use: New high-resolution data bases for climate studies. J. Climate Appl. Meteor., 22 , 474487.

    • Search Google Scholar
    • Export Citation
  • Matthews, E., 1984: Prescription of land-surface boundary conditions in GISS GCM II: A simple method based on high-resolution vegetation data bases. NASA Tech. Memo. 86096, National Aeronautics and Space Administration, Greenbelt, MD, 20 pp.

  • McNaughton, K G., , and P G. Jarvis, 1991: Effects of spatial scale on stomatal control of transpiration. Agric. For. Meteor., 54 , 279302.

    • Search Google Scholar
    • Export Citation
  • Meir, P., , J. Grace, , J. Lloyd, , and A C. Miranda, 1996: Soil respiration in a rain forest in Amazonia, and in cerrado in Central Brazil. Amazonian Climate and Deforestation, J. H. C. Gash et al., Eds., J. M. Wiley and Sons, 319–330.

    • Search Google Scholar
    • Export Citation
  • Mencuccini, M., , S. Mambelli, , and J. Comstock, 2000: Stomatal responsiveness to leaf water status in common bean (Phaseolus vulgaris L.) is a function of time of day. Plant Cell Environ., 23 , 11091118.

    • Search Google Scholar
    • Export Citation
  • Monteith, J L., 1973: Principles of Environmental Physics. Edward Arnold, 241 pp.

  • Morison, J. I. L., 1998: Stomatal response to increased CO2 concentration. J. Exp. Bot., 49 , 443452.

  • Mott, K A., , and D F. Parkhurst, 1991: Stomatal responses to humidity in air and helox. Plant Cell Environ., 14 , 509515.

  • New, M., , M. Hulme, , and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • Nobel, P S., 1991: Physicochemical and Environmental Plant Physiology. 2d ed. Academic Press, 474 pp.

  • Oke, T R., 1987: Boundary Layer Climates. 2d ed. Routledge, 450 pp.

  • Porté, A., , and D. Loustau, 1998: Variability of the photosynthetic characteristics of mature needles within the crown of a 25-year-old Pinus pinaster. Tree Physiol., 18 , 223232.

    • Search Google Scholar
    • Export Citation
  • Prentice, I C., and Coauthors, 2001: The carbon cycle and atmospheric carbon dioxide. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 183–237.

    • Search Google Scholar
    • Export Citation
  • Press, W H., , B P. Flannery, , S A. Teukolsky, , and W T. Vetterling, 1989: Numerical Recipes. “Fortran version.”. Cambridge University Press, 702 pp.

    • Search Google Scholar
    • Export Citation
  • Rayner, N A., , D E. Parker, , E B. Horton, , C K. Folland, , L V. Alexander, , D P. Rowell, , E C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., , and F. Abramopoulos, 1997: Land-surface model development for the GISS GCM. J. Climate, 10 , 20402054.

  • Rossow, W B., , and E N. Duenas, 2004: The International Satellite Cloud Climatology Project (ISCCP) Web site—An online resource for research. Bull. Amer. Meteor. Soc., 85 , 167172.

    • Search Google Scholar
    • Export Citation
  • Sellers, P J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9 , 676705.

    • Search Google Scholar
    • Export Citation
  • Spitters, C. J. T., 1986: Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part II. Calculation of canopy photosynthesis. Agric. For. Meteor., 38 , 231242.

    • Search Google Scholar
    • Export Citation
  • Spitters, C. J. T., , H. A. J. M. Toussaint, , and J. Goudriaan, 1986: Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiation. Agric. For. Meteor., 38 , 217229.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K E., , and G W. Branstator, 1992: Issues in establishing causes of the 1988 drought over North America. J. Climate, 5 , 159172.

    • Search Google Scholar
    • Export Citation
  • von Caemmerer, S., , and G D. Farquhar, 1981: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153 , 376387.

    • Search Google Scholar
    • Export Citation
  • White, M A., , P E. Thornton, , S W. Running, , and R R. Nemani, 2000: Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions, 4 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Williams, M., , Y. Malhi, , A D. Nobre, , E B. Rastetter, , J. Grace, , and M. G. P. Pereira, 1998: Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: A modelling analysis. Plant Cell Environ., 21 , 953968.

    • Search Google Scholar
    • Export Citation
  • Wofsy, S C., , M L. Goulden, , J W. Munger, , S M. Fan, , P S. Bakwin, , B C. Daube, , S L. Bassow, , and F A. Bazzaz, 1993: Net exchange of CO2 in a midlatitude forest. Science, 260 , 13141317.

    • Search Google Scholar
    • Export Citation
  • Wong, S C., , I R. Cowan, , and G D. Farquhar, 1979: Stomatal conductance correlates with photosynthetic capacity. Nature, 282 , 424426.

    • Search Google Scholar
    • Export Citation
  • Zeiger, E., , G D. Farquhar, , and I R. Cowan, 1987: Stomatal Function. Stanford University Press, 519 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 91 91 15
PDF Downloads 52 52 8

Land Surface Model Development for the GISS GCM: Effects of Improved Canopy Physiology on Simulated Climate

View More View Less
  • 1 Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette, France
  • | 2 Center for Climate Systems Research, Earth Institute, Columbia University, NASA Goddard Institute for Space Studies, New York, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A new physiology-based model of canopy stomatal conductance and photosynthesis is described and included in the latest version of the Goddard Institute for Space Studies (GISS) GCM, ModelE1. The submodel includes responses to atmospheric humidity and CO2 concentration, responses missing from previous GISS GCM land surface schemes. Measurements of moisture, energy, and CO2 fluxes over four vegetation types are used to test and calibrate the submodel. Photosynthetic leaf N is calibrated for each vegetation type from the flux measurements.

The new submodel results in surface cooling over many regions previously too warm. Some warm biases of over 2°C are cooled by more than 0.5°C, including over central Eurasia, South America, the western United States, and Australia. In addition, some regions that were previously too cool are warmed, such as northern Eurasia and the Tibetan Plateau. A number of precipitation biases are also reduced, particularly over South America (by up to 1 mm day−1) and the oceanic ITCZs (by over ±1 mm day−1); coastal west Africa becomes significantly wetter. Cloud cover increases over many land areas previously too clear.

Higher absolute canopy conductances, and positive feedbacks with atmospheric humidity, are largely responsible for the simulated vegetation influence on the atmosphere. High-latitude climate changes through remote effects of increased tropical latent heating, resulting directly from improved characterization of tropical forest canopy conductance. Realistic representation of the stomatal control on land evaporation is critical for accurate simulation of atmospheric dynamics in the GISS GCM.

Corresponding author address: Dr. Andrew D. Friend, Laboratoire des Sciences du Climat et de l’Environnement—Orme, Bât. 712, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France. Email: friend@lsce.saclay.cea.fr

Abstract

A new physiology-based model of canopy stomatal conductance and photosynthesis is described and included in the latest version of the Goddard Institute for Space Studies (GISS) GCM, ModelE1. The submodel includes responses to atmospheric humidity and CO2 concentration, responses missing from previous GISS GCM land surface schemes. Measurements of moisture, energy, and CO2 fluxes over four vegetation types are used to test and calibrate the submodel. Photosynthetic leaf N is calibrated for each vegetation type from the flux measurements.

The new submodel results in surface cooling over many regions previously too warm. Some warm biases of over 2°C are cooled by more than 0.5°C, including over central Eurasia, South America, the western United States, and Australia. In addition, some regions that were previously too cool are warmed, such as northern Eurasia and the Tibetan Plateau. A number of precipitation biases are also reduced, particularly over South America (by up to 1 mm day−1) and the oceanic ITCZs (by over ±1 mm day−1); coastal west Africa becomes significantly wetter. Cloud cover increases over many land areas previously too clear.

Higher absolute canopy conductances, and positive feedbacks with atmospheric humidity, are largely responsible for the simulated vegetation influence on the atmosphere. High-latitude climate changes through remote effects of increased tropical latent heating, resulting directly from improved characterization of tropical forest canopy conductance. Realistic representation of the stomatal control on land evaporation is critical for accurate simulation of atmospheric dynamics in the GISS GCM.

Corresponding author address: Dr. Andrew D. Friend, Laboratoire des Sciences du Climat et de l’Environnement—Orme, Bât. 712, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France. Email: friend@lsce.saclay.cea.fr

Save