• Arakawa, A., , and W H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., , and D L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50 , 29222939.

    • Search Google Scholar
    • Export Citation
  • Chao, W C., , and S-J. Lin, 1994: Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. J. Atmos. Sci., 51 , 12821297.

    • Search Google Scholar
    • Export Citation
  • Chao, W C., , and L. Deng, 1998: Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. Part II: 3D aquaplanet simulations. J. Atmos. Sci., 55 , 690709.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K A., 1987: An air–sea interaction model of intraseasonal oscillation in the Tropics. J. Atmos. Sci., 44 , 23242340.

  • Fu, X., , B. Wang, , T. Li, , and J P. McCreary, 2003: Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60 , 17331753.

    • Search Google Scholar
    • Export Citation
  • Gates, W L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73 , 19621970.

  • Gill, A E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Gualdi, S., , A. Navarra, , and G. Tinarelli, 1999: The interannual variability of the Madden–Julian oscillation in an ensemble of GCM simulations. Climate Dyn., 15 , 643658.

    • Search Google Scholar
    • Export Citation
  • Hack, J J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 99 , 55515568.

    • Search Google Scholar
    • Export Citation
  • Hendon, H H., 2000: Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. J. Atmos. Sci., 57 , 39393952.

    • Search Google Scholar
    • Export Citation
  • Hendon, H H., , and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47 , 29092924.

    • Search Google Scholar
    • Export Citation
  • Hendon, H H., , and M L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Hu, Q., , and D A. Randall, 1994: Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51 , 10891099.

  • Inness, P M., , and D. Gregory, 1997: Aspects of the intraseasonal oscillation simulated by the Hadley Centre Atmosphere Model. Climate Dyn., 13 , 441458.

    • Search Google Scholar
    • Export Citation
  • Inness, P M., , and J M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16 , 345364.

    • Search Google Scholar
    • Export Citation
  • Inness, P M., and Coauthors, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16 , 365382.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and B C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat fluxes in the Madden–Julian oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9 , 30863104.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kemball-Cook, S., , B. Wang, , and X. Fu, 2002: Simulation of the intraseasonal oscillation in ECHAM4 model: The impact of coupling with an ocean model. J. Atmos. Sci., 59 , 14331453.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J T., , J J. Hack, , and J W. Hurrell, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311150.

    • Search Google Scholar
    • Export Citation
  • Kuo, H-L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31 , 12321240.

    • Search Google Scholar
    • Export Citation
  • Lee, M-I., , I-S. Kang, , and B E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81 , 963992.

    • Search Google Scholar
    • Export Citation
  • Madden, R A., , and P R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R A., , and P R. Julian, 1972: Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R A., , and P R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

    • Search Google Scholar
    • Export Citation
  • Maloney, E D., 2002: An intraseasonal oscillation composite life cycle in the NCAR CCM3.6 with modified convection. J. Climate, 15 , 964982.

    • Search Google Scholar
    • Export Citation
  • Maloney, E D., , and D L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11 , 23872403.

    • Search Google Scholar
    • Export Citation
  • Maloney, E D., , and D L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14 , 20152034.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , J. Smagorinsky, , and R F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrological cycle. Mon. Wea. Rev., 93 , 769798.

    • Search Google Scholar
    • Export Citation
  • Meehl, G A., , G N. Kiladis, , K M. Weickmann, , M. Wheeler, , D S. Gutzler, , and G P. Compo, 1996: Modulation of equatorial subseasonal convective episodes by tropical–extratropical interaction in the Indian and Pacific Ocean regions. J. Geophys. Res., 101 , 1503315049.

    • Search Google Scholar
    • Export Citation
  • Meehl, G A., , R. Lukas, , G N. Kiladis, , K M. Weickmann, , A J. Matthews, , and M. Wheeler, 2001: A conceptual framework for time and space scale interactions in the climate system. Climate Dyn., 17 , 753775.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , and M J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Neale, R., , and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16 , 834848.

  • Neelin, J D., , I M. Held, , and K H. Cook, 1987: Evaporation wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Tech. Memo. 206, 41 pp.

  • North, G R., , T L. Bell, , R F. Cahalan, , and F J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Park, C K., , D M. Straus, , and K M. Lau, 1990: An evaluation of the structure of tropical intraseasonal oscillations in three general circulation models. J. Meteor. Soc. Japan, 68 , 403417.

    • Search Google Scholar
    • Export Citation
  • Rasch, P J., , and J E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11 , 15871614.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max Planck Institute for Meteorology Rep. 218, 90 pp.

  • Rui, H., , and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47 , 357379.

    • Search Google Scholar
    • Export Citation
  • Salby, M L., , and H H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the Tropics. J. Atmos. Sci., 51 , 22072224.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., 1995: The Madden–Julian oscillation in the Canadian Climate Centre general circulation model. Climate Dyn., 12 , 125140.

  • Slingo, J M., and Coauthors, 1996: Intraseasonal oscillation in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Sperber, K R., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131 , 30183037.

  • Sperber, K R., 2004: Madden–Julian variability in NCAR CAM2 and CCSM2. Climate Dyn., 23 , 259278.

  • Sud, Y C., , and G K. Walker, 1999: Microphysics of clouds with the relaxed Arakawa–Schubert Scheme (McRAS). Part I: Design and evaluation with GATE phase III data. J. Atmos. Sci., 56 , 31963220.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1988: Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. Physically-Based Modeling and Simulation of Climate and Climate Change, M. E. Schlesinger, Ed., Vol. 1, Kluwer Academic, 433–461.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47 , 397413.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and M E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12 , 14231457.

    • Search Google Scholar
    • Export Citation
  • Williamson, D L., , and J G. Olson, 2003: Dependence of aqua-planet simulations on time step. Quart. J. Roy. Meteor. Soc., 129 , 20492064.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S J., , J M. Slingo, , and B J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13 , 20862104.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Zhang, G J., , and N A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Coauthors, 2003: A modified formulation of fractional stratiform condensation rate in the NCAR community atmospheric model (CAM2). J. Geophys. Res., 108 .4035, doi:10.1029/2002JD002523.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 8
PDF Downloads 13 13 4

MJO in the NCAR CAM2 with the Tiedtke Convective Scheme

View More View Less
  • 1 International Pacific Research Center, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 2 Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California
  • | 3 International Pacific Research Center, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The boreal winter Madden–Julian oscillation (MJO) remains very weak and irregular in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 2 (CAM2) as in its direct predecessor, the Community Climate Model version 3 (CCM3). The standard version of CAM2 uses the deep convective scheme of Zhang and McFarlane, as in CCM3, with the closure dependent on convective available potential energy (CAPE). Here, sensitivity tests using several versions of the Tiedtke convective scheme are conducted. Typically, the Tiedtke convection scheme gives an improved mean state, intraseasonal variability, space–time power spectra, and eastward propagation compared to the standard version of the model. Coherent eastward propagation of MJO-related precipitation is also much improved, particularly over the Indian–western Pacific Oceans. A composite life cycle of the model MJO indicates that over the Indian Ocean wind-induced surface heat exchange (WISHE) functions, while over the western/central Pacific Ocean aspects of frictional moisture convergence are evident in the maintenance and eastward propagation of the oscillation.

Corresponding author address: Dr. Ping Liu, POST 409J, International Pacific Research Center, SOEST, University of Hawaii at Manoa, 1680 East–West Road, Honolulu, HI 96822. Email: pliu@hawaii.edu

Abstract

The boreal winter Madden–Julian oscillation (MJO) remains very weak and irregular in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 2 (CAM2) as in its direct predecessor, the Community Climate Model version 3 (CCM3). The standard version of CAM2 uses the deep convective scheme of Zhang and McFarlane, as in CCM3, with the closure dependent on convective available potential energy (CAPE). Here, sensitivity tests using several versions of the Tiedtke convective scheme are conducted. Typically, the Tiedtke convection scheme gives an improved mean state, intraseasonal variability, space–time power spectra, and eastward propagation compared to the standard version of the model. Coherent eastward propagation of MJO-related precipitation is also much improved, particularly over the Indian–western Pacific Oceans. A composite life cycle of the model MJO indicates that over the Indian Ocean wind-induced surface heat exchange (WISHE) functions, while over the western/central Pacific Ocean aspects of frictional moisture convergence are evident in the maintenance and eastward propagation of the oscillation.

Corresponding author address: Dr. Ping Liu, POST 409J, International Pacific Research Center, SOEST, University of Hawaii at Manoa, 1680 East–West Road, Honolulu, HI 96822. Email: pliu@hawaii.edu

Save