Cloud Feedbacks in the Climate System: A Critical Review

Graeme L. Stephens Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Graeme L. Stephens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper offers a critical review of the topic of cloud–climate feedbacks and exposes some of the underlying reasons for the inherent lack of understanding of these feedbacks and why progress might be expected on this important climate problem in the coming decade. Although many processes and related parameters come under the influence of clouds, it is argued that atmospheric processes fundamentally govern the cloud feedbacks via the relationship between the atmospheric circulations, cloudiness, and the radiative and latent heating of the atmosphere. It is also shown how perturbations to the atmospheric radiation budget that are induced by cloud changes in response to climate forcing dictate the eventual response of the global-mean hydrological cycle of the climate model to climate forcing. This suggests that cloud feedbacks are likely to control the bulk precipitation efficiency and associated responses of the planet’s hydrological cycle to climate radiative forcings.

The paper provides a brief overview of the effects of clouds on the radiation budget of the earth–atmosphere system and a review of cloud feedbacks as they have been defined in simple systems, one being a system in radiative–convective equilibrium (RCE) and others relating to simple feedback ideas that regulate tropical SSTs. The systems perspective is reviewed as it has served as the basis for most feedback analyses. What emerges is the importance of being clear about the definition of the system. It is shown how different assumptions about the system produce very different conclusions about the magnitude and sign of feedbacks. Much more diligence is called for in terms of defining the system and justifying assumptions. In principle, there is also neither any theoretical basis to justify the system that defines feedbacks in terms of global–time-mean changes in surface temperature nor is there any compelling empirical evidence to do so. The lack of maturity of feedback analysis methods also suggests that progress in understanding climate feedback will require development of alternative methods of analysis.

It has been argued that, in view of the complex nature of the climate system, and the cumbersome problems encountered in diagnosing feedbacks, understanding cloud feedback will be gleaned neither from observations nor proved from simple theoretical argument alone. The blueprint for progress must follow a more arduous path that requires a carefully orchestrated and systematic combination of model and observations. Models provide the tool for diagnosing processes and quantifying feedbacks while observations provide the essential test of the model’s credibility in representing these processes. While GCM climate and NWP models represent the most complete description of all the interactions between the processes that presumably establish the main cloud feedbacks, the weak link in the use of these models lies in the cloud parameterization imbedded in them. Aspects of these parameterizations remain worrisome, containing levels of empiricism and assumptions that are hard to evaluate with current global observations. Clearly observationally based methods for evaluating cloud parameterizations are an important element in the road map to progress.

Although progress in understanding the cloud feedback problem has been slow and confused by past analysis, there are legitimate reasons outlined in the paper that give hope for real progress in the future.

Corresponding author address: Dr. Graeme L. Stephens, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: stephens@atmos.colostate.edu

Abstract

This paper offers a critical review of the topic of cloud–climate feedbacks and exposes some of the underlying reasons for the inherent lack of understanding of these feedbacks and why progress might be expected on this important climate problem in the coming decade. Although many processes and related parameters come under the influence of clouds, it is argued that atmospheric processes fundamentally govern the cloud feedbacks via the relationship between the atmospheric circulations, cloudiness, and the radiative and latent heating of the atmosphere. It is also shown how perturbations to the atmospheric radiation budget that are induced by cloud changes in response to climate forcing dictate the eventual response of the global-mean hydrological cycle of the climate model to climate forcing. This suggests that cloud feedbacks are likely to control the bulk precipitation efficiency and associated responses of the planet’s hydrological cycle to climate radiative forcings.

The paper provides a brief overview of the effects of clouds on the radiation budget of the earth–atmosphere system and a review of cloud feedbacks as they have been defined in simple systems, one being a system in radiative–convective equilibrium (RCE) and others relating to simple feedback ideas that regulate tropical SSTs. The systems perspective is reviewed as it has served as the basis for most feedback analyses. What emerges is the importance of being clear about the definition of the system. It is shown how different assumptions about the system produce very different conclusions about the magnitude and sign of feedbacks. Much more diligence is called for in terms of defining the system and justifying assumptions. In principle, there is also neither any theoretical basis to justify the system that defines feedbacks in terms of global–time-mean changes in surface temperature nor is there any compelling empirical evidence to do so. The lack of maturity of feedback analysis methods also suggests that progress in understanding climate feedback will require development of alternative methods of analysis.

It has been argued that, in view of the complex nature of the climate system, and the cumbersome problems encountered in diagnosing feedbacks, understanding cloud feedback will be gleaned neither from observations nor proved from simple theoretical argument alone. The blueprint for progress must follow a more arduous path that requires a carefully orchestrated and systematic combination of model and observations. Models provide the tool for diagnosing processes and quantifying feedbacks while observations provide the essential test of the model’s credibility in representing these processes. While GCM climate and NWP models represent the most complete description of all the interactions between the processes that presumably establish the main cloud feedbacks, the weak link in the use of these models lies in the cloud parameterization imbedded in them. Aspects of these parameterizations remain worrisome, containing levels of empiricism and assumptions that are hard to evaluate with current global observations. Clearly observationally based methods for evaluating cloud parameterizations are an important element in the road map to progress.

Although progress in understanding the cloud feedback problem has been slow and confused by past analysis, there are legitimate reasons outlined in the paper that give hope for real progress in the future.

Corresponding author address: Dr. Graeme L. Stephens, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: stephens@atmos.colostate.edu

Save
  • Aires, F., and W. B. Rossow, 2003: Inferring instantaneous, multi-variate and non-linear sensitivities for analysis of feedbacks in a dynamical system: Lorenz model case study. Quart. J. Roy. Meteor. Soc., 129 , 239275.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., A. Slingo, and M. Ringer, 2002: Influence of dynamics on the changes in tropical cloud radiative forcing during the 1998 El Niño. J. Climate, 15 , 19791986.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrological cycle. Nature, 419 , 224232.

  • Arakawa, A., 1975: Modelling clouds and cloud processes for use in climate models. The Physical Basis of Climate and Climate Modelling, GARP Publications Series, Vol. 16, ICSU/WMO, 181–197.

    • Search Google Scholar
    • Export Citation
  • Arking, A., 1991: The radiative effects of clouds and their impact on climate. Bull. Amer. Meteor. Soc., 72 , 795813.

  • Bates, R., 1999: A dynamical stabilizer in the climate system: A mechanism suggested by a simple model. Tellus, 51A , 349372.

  • Bellman, R., and R. Roth, 1983: Quasilinearization and the Identification Problem. World Scientific Publishing Co., 224 pp.

  • Betts, A. K., 2000: Idealized model for equilibrium boundary layer over land. J. Hydrometeor., 1 , 507523.

  • Betts, A. K., 2004: Understanding hydrometerology using global models. Bull. Amer. Meteor. Soc., 85 , 16731688.

  • Betts, A. K., and Harshvardham, 1987: Thermodynamic constraint on the liquid water feedback in climate models. J. Geophys. Res., 92 , 84838485.

    • Search Google Scholar
    • Export Citation
  • Bishop, J. K., W. B. Rossow, and E. G. Dutton, 1997: Surface solar radiation from the international satellite cloud climatology project 1983–1991. J. Geophys. Res., 102 , 68836910.

    • Search Google Scholar
    • Export Citation
  • Bony, S., K-M. Lau, and Y. C. Sud, 1997: Sea surface temperature and large-scale circulation influences on tropical greenhouse effects and cloud radiative forcing. J. Climate, 10 , 20552077.

    • Search Google Scholar
    • Export Citation
  • Browning, K., 1993: The GEWEX cloud system study. Bull. Amer. Meteor. Soc., 74 , 387400.

  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of earth. Tellus, 21 , 611619.

  • Cess, R. D., and G. L. Potter, 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93 , 83058314.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and P. M. Udelhofen, 2003: Climate change during 1985–1999: Cloud interactions determined from satellite measurements. Geophys. Res. Lett., 30 .1019, doi:10.1029/2002GL016128.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95 , 1660116615.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101 , 1279112794.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., M. Zhang, B. A. Wielicki, D. F. Young, X-L. Zhou, and Y. Nikitenko, 2001: The influence of the 1998 El Niño upon cloud-radiative forcing over the Pacific warm pool. J. Climate, 14 , 21292137.

    • Search Google Scholar
    • Export Citation
  • Charlock, T. P., 1982: Cloud optical depth feedback and climate stability in a radiative-convective model. Tellus, 34 , 245254.

  • Charlock, T. P., and T. L. Alberta, 1996: The CERES/ARM/GEWEX Experiment (CAGEX) for the retrieval of radiative fluxes with satellite data. Bull. Amer. Meteor. Soc., 77 , 26732683.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1979: Carbon Dioxide and Climate: A Scientific Assessment. National Academy Press, 33 pp.

  • Chen, J., W. B. Rossow, and Y. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13 , 264286.

  • Chen, J., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295 , 838840.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 1999: Cirrus-detrainment temperature feedback. Geophys. Res. Lett., 26 , 12951298.

  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20 , 865873.

  • Colman, R., S. B. Power, and B. M. Avaney, 1997: Nonlinear climate feedback analysis in an atmospheric GCM. Climate Dyn., 13 , 717731.

    • Search Google Scholar
    • Export Citation
  • Colman, R., J. R. Fraser, and L. Rotstayn, 2001: Climate feedbacks in a general circulation model incorporating prognostic clouds. Climate Dyn., 18 , 103122.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and P. J. Webster, 1999: Thermodynamics of the Atmospheres and Oceans. Academic Press, 471 pp.

  • Curry, J. A., C. A. Clayson, W. B. Rossow, R. Reeder, Y-C. Zhang, P. J. Webster, G. Liu, and R-S. Sheu, 1999: High-resolution satellite-derived dataset of the surface fluxes of heat, freshwater, and momentum for the TOGA COARE IOP. Bull. Amer. Meteor. Soc., 80 , 20592080.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A., and A. B. Wolf, 2000: The temperature dependence of the liquid water path of low clouds in the southern Great Plains. J. Climate, 13 , 34653486.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A., and W. Kovari, 2002: Climatic properties of tropical convection under varying environmental conditions. J. Climate, 15 , 25972615.

    • Search Google Scholar
    • Export Citation
  • Ellis, J. S., and T. H. VonderHaar, 1976: Zonal average radiation budget measurements from satellites for climate studies. Atmospheric Science Paper 240, Dept. of Atmospheric Sciences, Colorado State University, 57 pp.

  • Fasullo, J., and P. J. Webster, 1999: Warm pool SST variability in relation to the surface energy balance. J. Climate, 12 , 12921305.

  • Fingerhut, W. A., 1978: Numerical model of a diurnally varying tropical cloud cluster disturbance. Mon. Wea. Rev., 106 , 255264.

  • Fowler, L. D., and D. A. Randall, 1994: A global radiative-convective feedback. Geophys. Res. Lett., 21 , 20352038.

  • Fu, R., A. Del Genio, W. B. Rossow, and W. T. Liu, 1992: Cirrus cloud thermostat for tropical sea surface temperatures using satellite data. Nature, 358 , 394397.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with large-scale dynamics using cloud resolving convection parameterization. J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., J-I. Yano, and M. W. Moncrieff, 2000: Cloud resolving modeling of tropical circulations driven by large-scale SST gradients. J. Atmos. Sci., 57 , 20022039.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. Barnett, 1987: Sea surface temperature, surface wind divergence and convection over the tropical oceans. Science, 238 , 657659.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobsen, 1977: Diurnal variation of deep convection. Mon. Wea. Rev., 105 , 11711188.

  • Greenwald, T. J., G. L. Stephens, S. A. Christopher, and T. H. VonderHaar, 1995: Observations of the global characteristics and regional radiative effects of marine cloud liquid water. J. Climate, 8 , 29282946.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., R. J. Stouffer, S. C. B. Raper, P. A. Stott, and N. A. Rayner, 2002: An observationally based estimate of the climate sensitivity. J. Climate, 15 , 31173121.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31 .L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., N. A. Ritchey, A. C. Wilber, C. H. Whitlock, G. G. Gibson, and N. A. Ritchey, 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12 , 26912710.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., W. B. Rossow, and S. G. Warren, 2001: ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J. Climate, 14 , 1128.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. D., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate Sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., No. 29, Amer. Geophys. Union, 130–163.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. D., M. Sto, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 , D6,. 68316834.

  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95 , 1868718703.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and D. A. Short, 1980: On the use of earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37 , 12331250.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on the tropical cloud–climate feedback. Geophys. Res. Lett., 29 .1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelson, 2002: No evidence for iris. Bull. Amer. Meteor. Soc., 83 , 12331238.

  • Hartmann, D. L., M. E. Okhert-Bell, and M. L. Michelson, 1992: The effect of cloud type on Earth’s energy balance. Global analysis. J. Climate, 5 , 12811304.

    • Search Google Scholar
    • Export Citation
  • Held, I., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25 , 441475.

  • Held, I., R. S. Hemler, and V. Ramaswamy, 1993: Radiative convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50 , 39093927.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., C. Jakob, and A. J. Illingworth, 2001: Comparison of ECMWF winter-season cloud fraction with radar-derived values. J. Appl. Meteor., 40 , 513525.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., L. G. Meira Filho, B. A. Callendar, N. Harris, A. Kattenberg, and K. Maskell, 1995: Climate Change 1995: The Science of Climate Change. Cambridge University Press, 572 pp.

    • Search Google Scholar
    • Export Citation
  • Ingram, W. J., C. A. Wilson, and J. F. B. Mitchell, 1989: Modelling climate change: An assessment of sea ice and surface albedo feedbacks. J. Geophys. Res., 94 , 86098622.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and G. Tselioudis, 2003: How representative are the cloud regimes at the TWP sites?—An ISCCP perspective. Proc. 13th ARM Science Team Meeting, Broomfield, CO, U.S. Dept. of Energy, 9 pp. [Available online at http://www.arm.gov/publications/proceedings/conf13/index.stm.].

  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud, and thermodynamic properties of the major tropical western Pacific cloud regimes. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Joshi, M., K. Shine, M. Ponater, N. Stuber, R. Sausen, and L. Li, 2003: A comparison of climate response to different radiative forcings in three general circulation models: Towards an improved metric of climate change. Climate Dyn., 20 , 843854.

    • Search Google Scholar
    • Export Citation
  • Kelly, M. A., D. A. Randall, and G. L. Stephens, 1999: A simple radiative convective model with a hydrological cycle and interactive clouds. Quart. J. Roy. Meteor. Soc., 125 , 837869.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127 , 25142531.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., Y. Jiang, and Y. L. Yung, 1998: Cloud optical thickness variations during 1983–1991: Solar cycle or ENSO? Geophys. Res. Lett., 25 , 14151417.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Larson, K., D. L. Hartmann, and S. A. Klein, 1999: The role of clouds, water vapor, circulation, and boundary layer structure in the sensitivity of the tropical climate. J. Climate, 12 , 23592374.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. W. Crane, 1995: A satellite view of the synoptic-scale organization of cloud properties in midlatitude and tropical cloud systems. Mon. Wea. Rev., 123 , 19842006.

    • Search Google Scholar
    • Export Citation
  • Lau, W-M., C-H. Ho, and M-D. Chou, 1996: Water vapor and cloud feedback over tropical oceans: Can we use ENSO as a surrogate for climate change? Geophys. Res. Lett., 23 , 29712974.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., and G. Stephens, 2003: The tropical oceanic energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16 , 19671985.

    • Search Google Scholar
    • Export Citation
  • LeTreut, H., and Z-X. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5 , 175187.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and H. G. Leighton, 1993: Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. J. Geophys. Res., 98 , 49194930.

    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., and W-C. Wang, 1997: Cloud overlap effects on GCM climate simulations. J. Geophys. Res., 102 , 1103911047.

  • Lin, B. B., A. Wielicki, L. H. Chambers, Y. Hu, and K-M. Xu, 2002: The iris hypothesis: A negative or positive feedback? J. Climate, 15 , 37.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R., M-D. Chou, and A. Hou, 2001: Does the Earth have an adaptive iris? Bull. Amer. Meteor. Soc., 82 , 417432.

  • Lynch, A. H., S. McIlwaine, J. Beringer, and G. B. Bonan, 2001: An investigation of the sensitivity of a land surface model to climate change using a reduced form model. Climate Dyn., 17 , 643652.

    • Search Google Scholar
    • Export Citation
  • Ma, C. C., C. R. Mechoso, A. Arakawa, and J. Farrara, 1994: Sensitivity of a coupled ocean–atmosphere model to physical parameterizations. J. Climate, 7 , 18831896.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and F. Moller, 1961: On the radiative equilibrium and heat balance of the atmosphere. Mon. Wea. Rev., 89 , 503532.

  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21 , 361385.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24 , 241259.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2001: Water’s two height scales: The moist adiabat and the radiative troposphere. Quart. J. Roy. Meteor. Soc., 127 , 23532366.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and W. M. Gray, 1980: Mass divergence in tropical weather systems. Paper 1, Diurnal variation. Quart. J. Roy. Meteor. Soc., 106 , 501516.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81 , 313318.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10 , 409440.

  • Miller, S. D., G. L. Stephens, and A. C. M. Beljaars, 1999: A validation survey of the ECMWF prognostic cloud scheme using LITE. Geophys. Res. Lett., 26 , 14171420.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113 , 293322.

    • Search Google Scholar
    • Export Citation
  • Moller, F., 1963: On the influence of changes in CO2 concentration in air on radiative balance of the Earth’s surface and on climate. J. Geophys. Res., 68 , 38773886.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2000: Nonlinear principal component analysis by neural networks: Theory and application to the Lorenz system. J. Climate, 13 , 821835.

    • Search Google Scholar
    • Export Citation
  • Newell, R., 1979: Climate and the ocean. Amer. Sci., 67 , 405416.

  • Norris, J. R., and C. P. Weaver, 2001: Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. J. Climate, 14 , 25402550.

    • Search Google Scholar
    • Export Citation
  • North, G. R., R. F. Cahalan, and J. A. Coakley Jr., 1981: Energy balance climate models. Rev. Geophys. Space Phys., 19 , 91121.

  • Ohring, G., and P. F. Clapp, 1980: The effect of changes in cloud amount on the net radiation at the top of the atmosphere. J. Atmos. Sci., 37 , 447454.

    • Search Google Scholar
    • Export Citation
  • Okhert-Bell, M. E., and D. L. Hartmann, 1992: The effect of cloud type on earth’s energy balance: Results for selected regions. J. Climate, 5 , 11571171.

    • Search Google Scholar
    • Export Citation
  • Paltridge, G. W., 1980: Cloud–radiation feedback to climate. Quart. J. Roy. Meteor. Soc., 106 , 895899.

  • Paltridge, G. W., 1991: Rainfall–albedo feedback to climate. Quart. J. Roy. Meteor. Soc., 117 , 647650.

  • Pierrehumbert, R., 1995: Thermostats, radiator fins, and the runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Pinker, R. T., and L. A. Corio, 1984: Surface radiation budget from satellites. Mon. Wea. Rev., 112 , 209215.

  • Priestley, C. H. B., 1964: The limitation of temperature by evaporation in hot climates. Agric. Meteor., 3 , 241246.

  • Ramanathan, V., 1981: The role of ocean–atmosphere interactions in the CO2 climate problem. J. Atmos. Sci., 38 , 918930.

  • Ramanathan, V., and W. D. Collins, 1991: Thermodynamic regulation of the ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351 , 2732.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., D. A. Dazlich, and T. G. Corsetti, and Harshvardham, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46 , 19431970.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84 , 15471564.

    • Search Google Scholar
    • Export Citation
  • Renno, N. O., K. A. Emanuel, and P. H. Stone, 1994: A radiative–convective model with an explicit hydrological cycle. I. Formulation and sensitivity to model parameters. J. Geophys. Res., 99 , 1442914441.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., 1987: Cloud optical depth feedbacks and climate modelling. Nature, 329 , 138140.

  • Roeckner, E., 1988: Reply to “Negative or positive cloud optical depth feedback” of M. Schlesinger. Nature, 335 , 304.

  • Rosenfield, D., 1999: TRMM observed first direct evidence for smoke from forest fires inhibiting precipitation. Geophys. Res. Lett., 26 , 31053108.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Rossow, W. B., and B. Cairns, 1995: Monitoring changes of clouds. Climatic Change, 31 , 305347.

  • Rossow, W. B., and Y-C. Zhang, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 2: Validation and first results. J. Geophys. Res., 100 , D1,. 11671197.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612288.

  • Schlessinger, M. E., 1988: Negative or positive cloud optical depth feedback? Nature, 335 , 303304.

  • Schlessinger, M. E., and J. F. B. Mitchell, 1987: Model projections of the equilibrium climatic response to increased CO2. Rev. Geophys., 25 , 760798.

    • Search Google Scholar
    • Export Citation
  • Schneider, S., 1972: Cloudiness as a global climatic feedback mechanism: The effects on radiation balance and surface temperatures of variations in cloudiness. J. Atmos. Sci., 29 , 14131422.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 1993: Carbon dioxide and climate: The impact of cloud parameterization. J. Climate, 6 , 393418.

  • Slingo, A., and J. M. Slingo, 1988: Response of a general circulation model to cloud long-wave radiative forcing. Part I: Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114 , 10271062.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water contents in a general circulation model. Quart. J. Roy. Meteor. Soc., 116 , 435460.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002: Global cooling after the eruption of Mt. Pinatubo: A test of climate feedback by water vapor. Science, 296 , 727730.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17 , 36613665.

    • Search Google Scholar
    • Export Citation
  • Sommerville, R., and L. A. Remer, 1984: Cloud optical thickness feedbacks in the CO2 climate problem. J. Geophys. Res., 89 , 96689672.

    • Search Google Scholar
    • Export Citation
  • Sommerville, R., and S. Iacobellis, 1986: Cloud–radiation interactions: Effects of cirrus optical thickness feedbacks. Proc. WMO/IUGG Symp., Tokyo, Japan, WMO/IUGG, 177–185.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiative properties in extended water clouds. Part II: Parameterization schemes. J. Atmos. Sci., 35 , 21232132.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1990: On the relationship between water vapor over the oceans and sea surface temperature. J. Climate, 3 , 634645.

  • Stephens, G. L., 2000: Cirrus, climate and global change. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 433–448.

  • Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci., 38 , 235247.

  • Stephens, G. L., and P. J. Webster, 1984: Cloud decoupling of surface and planetary radiative budgets. J. Atmos. Sci., 41 , 681686.

  • Stephens, G. L., and T. J. Greenwald, 1991: The Earth’s Radiation Budget and its relation to atmospheric hydrology. Part II: Observations of cloud effects. J. Geophys. Res., 96 , 1532515340.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S-C. Tsay, P. W. Stackhouse Jr., and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47 , 17421754.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. A. Randall, I. Wittmeyer, and D. A. Dazlich, 1993: The Earth’s Radiation Budget in relation to atmospheric hydrology. Part III: Comparison of observations over oceans with a GCM. J. Geophys. Res., 98 , 49314950.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., A. Slingo, M. J. Webb, P. J. Minnett, P. H. Daum, L. Kleiman, I. Wittmeyer, and D. A. Randall, 1994: Observations of the Earth’s Radiation Budget in relation to atmospheric hydrology. Part IV: Atmospheric column radiative cooling over the worlds’ oceans. J. Geophys. Res., 99 , 1858518604.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The Cloudsat Mission and the A-Train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17 , 22132224.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., A. Noda, and N. Subo, 2002: Influence of the global warming of tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80 , 249272.

    • Search Google Scholar
    • Export Citation
  • Sui, C. H., K. M. Lau, W-K. Tao, and J. Simpson, 1994: Tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci., 51 , 711728.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for nonconvective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104 , 677690.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., and S. J. Ghan, 1992: An analysis of cloud liquid water feedback and global climate sensitivity in a general circulation model. J. Climate, 5 , 907919.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: On the relationship between tropical convection and SST. J. Climate, 14 , 633637.

  • Tompkins, A. M., and G. C. Craig, 1998: Radiative–convective-equilibrium in a three-dimensional cloud ensemble model. Quart. J. Roy. Meteor. Soc., 124 , 20732098.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and W. B. Rossow, 1994: Global, multiyear variations of optical thickness with temperature in low and cirrus clouds. Geophys. Res. Lett., 21 , 22112214.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and C. Jakob, 2002: Evaluation of midlatitude cloud properties in a weather and climate model: Dependence on dynamic regime and spatial resolution. J. Geophys. Res., 107 .4781, doi:10.1029/2002JD002259.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., Y. Zhang, and W. B. Rossow, 2000: Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. J. Climate, 13 , 312327.

    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and S. Manabe, 2001: Influence of cloud feedback on annual variation of global mean surface temperature. J. Geophys. Res., 106 , 2263522646.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34 , 11491152.

  • Waliser, D. E., 1996: Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and thermodynamics. J. Climate, 9 , 161188.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool SSTs: Coupled interactions and self-regulation. J. Geophys. Res., 98 , 1288112893.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1992: Effect of deep convection on the regulation of tropical SST. Nature, 377 , 230231.

  • Wang, W-C., W. B. Rossow, M-S. Yao, and M. Wolfson, 1981: Climate sensitivity of a one dimensional radiative convective model with cloud feedback. J. Atmos. Sci., 38 , 11671178.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., and V. Ramanathan, 1996: The link between summertime cloud radiative forcing and extratropical cyclones in the North Pacific. J. Climate, 9 , 20932109.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., and V. Ramanathan, 1997: Relationships between large-scale vertical velocity, static stability, and cloud radiative forcing over the Northern Hemisphere extratropical oceans. J. Climate, 10 , 28712877.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., C. Senior, S. Bony, and J-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF, and LMD atmospheric climate models. Climate Dyn., 17 , 905922.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and G. L. Stephens, 1984: Cloud–radiation interaction and the climate problem. The Global Climate, J. Houghton, Ed., Cambridge University Press, 63–78.

    • Search Google Scholar
    • Export Citation
  • Weinman, J. A., and Harshvarhan, 1984: Solar reflection from a regular array of horizontally finite clouds. Appl. Opt., 21 , 29402944.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45 , 13971415.

  • Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, 1995: Mission to planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76 , 21252153.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2002: Response to “Changes in tropical clouds and radiation by K. E. Trenberth.”. Science, 296 , 2095a.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., M. Ringer, and C. Senior, 2003: On evaluating cloud feedback: Comparing the response to increased greenhouse gases with current climate variability. Climate Dyn., 20 , 705721.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., R. H. Couch, and M. P. McCormick, 1996: An overview of LITE: NASA’s lidar-in-space technology experiment. Proc. IEEE, 84 , 164180.

    • Search Google Scholar
    • Export Citation
  • Yao, M-S., and A. Del Genio, 2002: Effects of cloud parameterization on the simulation of climate changes in the GISS GCM. Part II: Sea surface temperatures and cloud feedbacks. J. Climate, 15 , 24912503.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., R. D. Cess, J. J. Hack, and J. T. Kiehl, 1994: Diagnostic study of climate feedback processes in atmospheric general circulation models. J. Geophys. Res., 99 , 55255537.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y-C., W. B. Rossow, and A. Lacis, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 1. Method and sensitivity to input data uncertainties. J. Geophys. Res., 100 , 11491165.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11356 3031 337
PDF Downloads 6000 1265 125