Relation between Annular Modes and the Mean State: Southern Hemisphere Summer

Francis Codron Laboratoire de Météorologie Dynamique du CNRS, Paris, France

Search for other papers by Francis Codron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The annular modes emerge as the leading mode of extratropical month-to-month climate variability in both hemispheres. Here the influence of the background state on the structure and dynamics of the Southern Hemisphere annular mode (SAM) during the austral summer when the climatology is characterized by a single, well-defined, eddy-driven jet is studied. Subsets of the climatology are constructed for early and late summer, and for contrasting polarities of the ENSO cycle. The analysis is based both on observations and on perpetual-state GCM experiments. The main differences between the subsets involve variations of the latitude of the mean jet.

It is found that in all the cases, the SAM is characterized by latitudinal shifts of the jet about its mean position, reinforced by a positive momentum flux feedback from baroclinic waves. This result is consistent with previous studies of the dynamics of the zonally averaged circulation but is found here to hold over all longitudes and for different positions of the mean jet. The low frequency eddies exert a weaker negative feedback upon the mean flow, with a less zonally symmetric structure.

The strong differences in the amplitude of the SAM among the various climatologies seem to be determined by a combination of 1) the variance of the “random” forcing by transient eddies and 2) the strength of the positive feedback component of this forcing. The latter mechanism increases the variance at low frequencies only and lengthens the decorrelation time of zonal-mean zonal wind anomalies. It tends to become stronger when the mean jet moves equatorward.

Corresponding author address: Francis Codron, Laboratoire de Meteorologie Dynamique, T. 45–55, 3e E, Jussieu CNRS/UPMC, Boite 99, F-75252 Paris Cedex 05, France. Email: fcodron@lmd.jussieu.fr

Abstract

The annular modes emerge as the leading mode of extratropical month-to-month climate variability in both hemispheres. Here the influence of the background state on the structure and dynamics of the Southern Hemisphere annular mode (SAM) during the austral summer when the climatology is characterized by a single, well-defined, eddy-driven jet is studied. Subsets of the climatology are constructed for early and late summer, and for contrasting polarities of the ENSO cycle. The analysis is based both on observations and on perpetual-state GCM experiments. The main differences between the subsets involve variations of the latitude of the mean jet.

It is found that in all the cases, the SAM is characterized by latitudinal shifts of the jet about its mean position, reinforced by a positive momentum flux feedback from baroclinic waves. This result is consistent with previous studies of the dynamics of the zonally averaged circulation but is found here to hold over all longitudes and for different positions of the mean jet. The low frequency eddies exert a weaker negative feedback upon the mean flow, with a less zonally symmetric structure.

The strong differences in the amplitude of the SAM among the various climatologies seem to be determined by a combination of 1) the variance of the “random” forcing by transient eddies and 2) the strength of the positive feedback component of this forcing. The latter mechanism increases the variance at low frequencies only and lengthens the decorrelation time of zonal-mean zonal wind anomalies. It tends to become stronger when the mean jet moves equatorward.

Corresponding author address: Francis Codron, Laboratoire de Meteorologie Dynamique, T. 45–55, 3e E, Jussieu CNRS/UPMC, Boite 99, F-75252 Paris Cedex 05, France. Email: fcodron@lmd.jussieu.fr

Save
  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic oscillation or North Atlantic oscillation? J. Climate, 14 , 34953507.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., and N-C. Lau, 1980: Regional characteristics of the northern hemisphere wintertime circulation: A comparison of the simulation of a GFDL general circulation model with observations. J. Atmos. Sci., 37 , 497514.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2000: Do stationary waves drive the zonal-mean jet anomalies of the northern winter? J. Climate, 13 , 21602176.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S., 1998: The growth and decay of low-frequency anomalies in a GCM. J. Atmos. Sci., 55 , 415428.

  • Feldstein, S., and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55 , 30773086.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karoly, D. J., 1990: The role of transient eddies in low-frequency zonal variations of the Southern Hemisphere circulation. Tellus, 42A , 4150.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14 , 22382249.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13 , 44144429.

  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58 , 33123327.

  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16 , 12121227.

  • Lott, F., 1999: Alleviation of stationary biases in a GCM through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mon. Wea. Rev., 127 , 788801.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., and J. M. Wallace, 2002: Dependence of the structure of the Northern Hemisphere annular mode on the polarity of ENSO. Geophys. Res. Lett., 29 .2132, doi:10.102a/2002GL015807.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1996: Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci., 53 , 35563569.

  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57 , 415422.

  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16 , 29602978.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Interannual variability of the Southem Hemisphere circulation: Representativeness of the year of the global weather experiment. Mon. Wea. Rev., 112 , 108123.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., 2001a: COADS updates including newly digitized data and the blend with the UK Meteorological Office Marine Data Bank. Proc. Workshop on Preparation, Processing and Use of Historical Marine Meteorological Data, Tokyo, Japan, Japan Meteorological Agency and the Ship & Ocean Foundation, 9–13.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., 2001b: Quality control in recent COADS updates. Proc. Workshop on Preparation, Processing and Use of Historical Marine Meteorological Data, Tokyo, Japan, Japan Meteorological Agency and the Ship & Ocean Foundation, 49–53.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 616 305 14
PDF Downloads 221 63 2