North Atlantic Decadal Variability: Air–Sea Coupling, Oceanic Memory, and Potential Northern Hemisphere Resonance

Lixin Wu Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Lixin Wu in
Current site
Google Scholar
PubMed
Close
and
Zhengyu Liu Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Zhengyu Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, the causes and mechanisms of North Atlantic decadal variability are explored in a series of coupled ocean–atmosphere simulations. The model captures the major features of the observed North Atlantic decadal variability. The North Atlantic SST anomalies in the model control simulation exhibit a prominent decadal cycle of 12–16 yr, and a coherent propagation from the western subtropical Atlantic to the subpolar region. A series of additional modeling experiments are conducted in which the air–sea coupling is systematically modified in order to evaluate the importance of air–sea coupling for the North Atlantic decadal variability being studied. This shall be referred to as “modeling surgery.” The results suggest the critical role of ocean–atmosphere coupling in sustaining the North Atlantic decadal oscillation at selected time scales. The coupling in the North Atlantic is characterized by a robust North Atlantic Oscillation (NAO)-like atmospheric response to the SST tripole anomaly, which tends to intensify the SST anomaly and, meanwhile, also provide a delayed negative feedback. This delayed negative feedback is predominantly associated with the adjustment of the subtropical gyre in response to the anomalous wind stress curl in the subtropical Atlantic. Atmospheric stochastic forcing can drive SST patterns similar to those in the fully coupled ocean–atmosphere system, but fails to generate any preferred decadal time scales. The simulated North Atlantic decadal variability, therefore, can be viewed as a coupled ocean–atmosphere mode under the influence of stochastic forcing.

This modeling study also suggests some potential resonance between the Pacific and the North Atlantic decadal fluctuations mediated by the atmosphere. The modeling surgery indicates that the Pacific climate, although not a necessary precondition, can impact the North Atlantic climate variability substantially.

Corresponding author address: Lixin Wu, Center for Climatic Research, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706. Email: lixinwu@facstaff.wisc.edu

Abstract

In this paper, the causes and mechanisms of North Atlantic decadal variability are explored in a series of coupled ocean–atmosphere simulations. The model captures the major features of the observed North Atlantic decadal variability. The North Atlantic SST anomalies in the model control simulation exhibit a prominent decadal cycle of 12–16 yr, and a coherent propagation from the western subtropical Atlantic to the subpolar region. A series of additional modeling experiments are conducted in which the air–sea coupling is systematically modified in order to evaluate the importance of air–sea coupling for the North Atlantic decadal variability being studied. This shall be referred to as “modeling surgery.” The results suggest the critical role of ocean–atmosphere coupling in sustaining the North Atlantic decadal oscillation at selected time scales. The coupling in the North Atlantic is characterized by a robust North Atlantic Oscillation (NAO)-like atmospheric response to the SST tripole anomaly, which tends to intensify the SST anomaly and, meanwhile, also provide a delayed negative feedback. This delayed negative feedback is predominantly associated with the adjustment of the subtropical gyre in response to the anomalous wind stress curl in the subtropical Atlantic. Atmospheric stochastic forcing can drive SST patterns similar to those in the fully coupled ocean–atmosphere system, but fails to generate any preferred decadal time scales. The simulated North Atlantic decadal variability, therefore, can be viewed as a coupled ocean–atmosphere mode under the influence of stochastic forcing.

This modeling study also suggests some potential resonance between the Pacific and the North Atlantic decadal fluctuations mediated by the atmosphere. The modeling surgery indicates that the Pacific climate, although not a necessary precondition, can impact the North Atlantic climate variability substantially.

Corresponding author address: Lixin Wu, Center for Climatic Research, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706. Email: lixinwu@facstaff.wisc.edu

Save
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of winter midlatitude SST anomalies. J. Phys. Oceanogr., 25 , 122137.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., U. S. Bhatt, and M. A. Alexander, 1995: A modeling study of the interannual variability of the North Atlantic Ocean. J. Climate, 8 , 30673083.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10 Academic Press, 1–82.

  • Curry, R. G., and M. S. McCartney, 2001: Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr., 31 , 33743400.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and J. Marshall, 2001: Observations of atmosphere–ocean coupling in the North Atlantic. Quart. J. Roy. Meteor. Soc., 127 , 18931916.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of North Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15 , 606623.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., A. W. Robertson, and T. Huck, 2003: The role of Atlantic ocean–atmosphere coupling in affecting North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environment Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 147–172.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., 1996: North Atlantic interannual variability in a coupled ocean–atmosphere model. J. Climate, 9 , 23562375.

  • Delworth, T., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13 , 14811495.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the North Atlantic. Climate Dyn., 16 , 661676.

  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations in the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6 , 19932010.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1993. J. Climate, 6 , 17431753.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14 , 676691.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Muller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27 , 15331546.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., E. Kestenare, N. Sennéchael, G. de Coëtlogon, and F. D’Andréa, 2001: On decadal-scale ocean–atmosphere interactions in the extended ECHAM1/LSG climate simulation. Climate Dyn., 16 , 333354.

    • Search Google Scholar
    • Export Citation
  • Goodman, J., and J. Marshall, 1999: A model of decadal middle-latitude atmosphere–ocean coupled models. J. Climate, 12 , 621641.

  • Grötzner, A., M. Latif, and T. P. Barnett, 1998: A decadal climate cycle in the North Atlantic Ocean as simulated by the ECHO coupled GCM. J. Climate, 11 , 831847.

    • Search Google Scholar
    • Export Citation
  • Halliwell, G., 1998: Simulation of North Atlantic decadal/multidecadal winter SST anomalies driven by basin-scale atmospheric circulation anomalies. J. Phys. Oceanogr., 28 , 521.

    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., and H. F. Bezdek, 1996: On the nature of decadal anomalies in North Atlantic sea surface temperature. J. Geophys. Res., 101 , 87498758.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292 , 9092.

  • Honda, M., H. Nakamura, J. Ukita, L. Kouska, and K. Takeuchi, 2001: Interannual seesaw between the Aleutian and Iceland Lows. Part I: Seasonal dependence and life cycle. J. Climate, 14 , 10291042.

    • Search Google Scholar
    • Export Citation
  • Hurrel, J. W., G. Ottersen, Y. Kushnir, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environment Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Search Google Scholar
    • Export Citation
  • Jacob, R. L., 1997: Low frequency variability in a simulated atmosphere ocean system. Ph.D. thesis, University of Wisconsin—Madison, 155 pp.

  • Kelly, K. A., and S. Dong, 2004: The relationship of western boundary current heat transport and storage to midlatitude ocean-atmosphere interaction. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., No. 137, Amer. Geophys. Union, 347–364.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 142157.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. T. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15 , 22332256.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability in the North Pacific/North Atlantic sector. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9 , 24072423.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and L. Wu, 2004: Atmospheric response to North Pacific SST anomaly: The role of ocean–atmosphere coupling. J. Climate, 17 , 18591882.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., J. Kutzbach, and L. Wu, 2000: Modeling climate shift of El Niño in the Holocene. Geophys. Res. Lett., 27 , 22652268.

  • Liu, Z., B. Otto-Bliesner, J. Kutzbach, L. Li, and C. Shields, 2003: Coupled climate simulation of the evolution of global monsoons in the Holocene. J. Climate, 16 , 24722490.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Johnson, and J. Goodman, 2001a: A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J. Climate, 14 , 13991421.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001b: Atlantic climate variability. Int. J. Climatol., 21 , 18631898.

  • Molinari, R. L., D. A. Mayer, J. F. Festa, and H. F. Bezdek, 1997: Multiyear variability in the near-surface temperature structure of the midlatitude western North Atlantic Ocean. J. Geophys. Res, 102 , 32673278.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., S. P. Xie, A. Numaguti, and Y. Tanimoto, 2001: Tropical Atlantic air–sea interaction and its influence on the NAO. Geophys. Res. Lett., 28 , 15071510.

    • Search Google Scholar
    • Export Citation
  • Peng, S., A. Mysak, H. Ritchie, J. Derome, and B. Dugas, 1995: The difference between early and middle winter atmospheric response to sea surface temperature anomalies in the northwestern Atlantic. J. Climate, 8 , 137157.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16 , 19872004.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., C. R. Mechoso, and Y. J. Kim, 2000: The influence of Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J. Climate, 13 , 122138.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and J. C. McWilliams, 1998: Advective ocean–atmosphere interaction: An analytical stochastic model with implications for decadal variability. J. Climate, 11 , 165188.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and M. R. Allen, 1997: Decadal predictability of North Atlantic sea surface temperature and climate. Nature, 388 , 563567.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and P. Mathieu, 2002: Response of the atmosphere–ocean mixed layer system to anomalous ocean heat flux convergence. Quart. J. Roy. Meteor. Soc., 128 , 12591275.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., W. A. Norton, and S. P. Jewson, 2001: The North Atlantic Oscillation—What role for the Ocean? Atmos. Sci. Lett., doi:10.1006/asle.2000.0021.

  • Thompson, D. J., and J. M. Wallace, 1998: The Arctic oscillation signature in wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Timmerman, A., M. Latif, R. Voss, and A. Grötzner, 1998: Northern Hemispheric interdecadal variability: A coupled air–sea mode. J. Climate, 11 , 19061931.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NMC and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Venzke, S., M. R. Allen, R. T. Sutton, and D. P. Rowell, 1999: The atmospheric response over the North Atlantic to decadal changes in sea surface temperatures. J. Climate, 12 , 25622584.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., H. Cullen, G. Krahman, and N. Naik, 1998: An ocean model’s response to North Atlantic Oscillation–like wind forcing. Geophys. Res. Lett., 25 , 45214524.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., E. Chassignet, R. Curry, T. Delworth, B. Dickson, and G. Krahmann, 2003: The ocean’s response to NAO variability. The North Atlantic Oscillation: Climatic Significance and Environment Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 1999: Tropical-extratropical connection in the Atlantic atmosphere-ocean variability. Geophys. Res. Lett., 26 , 22472250.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Ocean atmosphere thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126 , 33433369.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., E. S. Sarachik, and J. Marotzke, 1991: Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature, 353 , 836838.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Z. Liu, 2002: Is tropical Atlantic variability driven by the North Atlantic Oscillation? Geophys. Res. Lett., 29 .1653, doi:10.1029/2002GL014939.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Z. Liu, 2003: Decadal variability in the North Pacific: The eastern North Pacific mode. J. Climate, 16 , 31113131.

  • Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. J. Climate, 16 , 11011120.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., N. Schneider, D. Pierce, and T. Barnett, 2001: Modeling of North Pacific climate variability forced by oceanic heat flux anomalies. J. Climate, 14 , 40274066.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., and C. Frankignoul, 1997: Modes of North Atlantic decadal variability in the ECHAM1/LSG coupled atmosphere–ocean general circulation model. J. Climate, 10 , 183200.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1324 704 63
PDF Downloads 487 71 10