Impact of Indian Ocean Sea Surface Temperature on Developing El Niño

H. Annamalai International Pacific Research Center, University of Hawaii, Honolulu, Hawaii

Search for other papers by H. Annamalai in
Current site
Google Scholar
PubMed
Close
,
S. P. Xie International Pacific Research Center, University of Hawaii, Honolulu, Hawaii

Search for other papers by S. P. Xie in
Current site
Google Scholar
PubMed
Close
,
J. P. McCreary International Pacific Research Center, University of Hawaii, Honolulu, Hawaii

Search for other papers by J. P. McCreary in
Current site
Google Scholar
PubMed
Close
, and
R. Murtugudde ESSIC, University of Maryland, College Park, College Park, Maryland

Search for other papers by R. Murtugudde in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Prior to the 1976–77 climate shift (1950–76), sea surface temperature (SST) anomalies in the tropical Indian Ocean consisted of a basinwide warming during boreal fall of the developing phase of most El Niños, whereas after the shift (1977–99) they had an east–west asymmetry—a consequence of El Niño being associated with the Indian Ocean Dipole/Zonal mode. In this study, the possible impact of these contrasting SST patterns on the ongoing El Niño is investigated, using atmospheric reanalysis products and solutions to both an atmospheric general circulation model (AGCM) and a simple atmospheric model (LBM), with the latter used to identify basic processes. Specifically, analyses of reanalysis products during the El Niño onset indicate that after the climate shift a low-level anticyclone over the South China Sea was shifted into the Bay of Bengal and that equatorial westerly anomalies in the Pacific Ocean were considerably stronger. The present study focuses on determining influence of Indian Ocean SST on these changes.

A suite of AGCM experiments, each consisting of a 10-member ensemble, is carried out to assess the relative importance of remote (Pacific) versus local (Indian Ocean) SST anomalies in determining precipitation anomalies over the equatorial Indian Ocean. Solutions indicate that both local and remote SST anomalies are necessary for realistic simulations, with convection in the tropical west Pacific and the subsequent development of the South China Sea anticyclone being particularly sensitive to Indian Ocean SST anomalies. Prior to the climate shift, the basinwide Indian Ocean SST anomalies generate an atmospheric Kelvin wave associated with easterly flow over the equatorial west-central Pacific, thereby weakening the westerly anomalies associated with the developing El Niño. In contrast, after the shift, the east–west contrast in Indian Ocean SST anomalies does not generate a significant Kelvin wave response, and there is little effect on the El Niño–induced westerlies. The Linear Baroclinic Model (LBM) solutions confirm the AGCM’s results.

Corresponding author address: Dr. H. Annamalai, IPRC/SOEST, University of Hawaii, 1680 East West Rd., Honolulu, HI 96822. Email: hanna@hawaii.edu

Abstract

Prior to the 1976–77 climate shift (1950–76), sea surface temperature (SST) anomalies in the tropical Indian Ocean consisted of a basinwide warming during boreal fall of the developing phase of most El Niños, whereas after the shift (1977–99) they had an east–west asymmetry—a consequence of El Niño being associated with the Indian Ocean Dipole/Zonal mode. In this study, the possible impact of these contrasting SST patterns on the ongoing El Niño is investigated, using atmospheric reanalysis products and solutions to both an atmospheric general circulation model (AGCM) and a simple atmospheric model (LBM), with the latter used to identify basic processes. Specifically, analyses of reanalysis products during the El Niño onset indicate that after the climate shift a low-level anticyclone over the South China Sea was shifted into the Bay of Bengal and that equatorial westerly anomalies in the Pacific Ocean were considerably stronger. The present study focuses on determining influence of Indian Ocean SST on these changes.

A suite of AGCM experiments, each consisting of a 10-member ensemble, is carried out to assess the relative importance of remote (Pacific) versus local (Indian Ocean) SST anomalies in determining precipitation anomalies over the equatorial Indian Ocean. Solutions indicate that both local and remote SST anomalies are necessary for realistic simulations, with convection in the tropical west Pacific and the subsequent development of the South China Sea anticyclone being particularly sensitive to Indian Ocean SST anomalies. Prior to the climate shift, the basinwide Indian Ocean SST anomalies generate an atmospheric Kelvin wave associated with easterly flow over the equatorial west-central Pacific, thereby weakening the westerly anomalies associated with the developing El Niño. In contrast, after the shift, the east–west contrast in Indian Ocean SST anomalies does not generate a significant Kelvin wave response, and there is little effect on the El Niño–induced westerlies. The Linear Baroclinic Model (LBM) solutions confirm the AGCM’s results.

Corresponding author address: Dr. H. Annamalai, IPRC/SOEST, University of Hawaii, 1680 East West Rd., Honolulu, HI 96822. Email: hanna@hawaii.edu

Save
  • Allan, R. J., and Coauthors, 2001: Is there an Indian Ocean dipole independent of the El Niño-Southern Oscillations? CLIVAR Exchanges, Vol. 6, No. 3, International CLIVAR Project Office, Southampton, United Kingdom, 18–22.

    • Search Google Scholar
    • Export Citation
  • An, S. I., and F. F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17 , 23992412.

  • Anderson, D. L. T., and J. P. McCreary, 1985: On the role of the Indian Ocean in a coupled ocean–atmosphere model of El Niño and the Southern Oscillation. J. Atmos. Sci., 42 , 24392444.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. M. Slingo, K. R. Sperber, and K. Hodges, 1999: The mean evolution and variability of the Asian summer monsoon: Comparison of ECMWF and NCEP–NCAR reanalyses. Mon. Wea. Rev., 127 , 11571186.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics in the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res., 50B , 23052330.

    • Search Google Scholar
    • Export Citation
  • Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On dipolelike variability of sea surface temperature in the tropical Indian Ocean. J. Climate, 15 , 13581368.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1983: Interaction of the monsoon and Pacific trade wind system at interannual time scales. Part I: The equatorial zone. Mon. Wea. Rev., 111 , 756773.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Southern Oscillation. J. Meteor. Soc. Japan, 81 , 169177.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., R. Krishnan, and T. Yamagata, 1999: Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26 , 30013004.

    • Search Google Scholar
    • Export Citation
  • Betts, A., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX, and artic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Chung, C., and S. Nigam, 1999: Asian summer monsoon–ENSO feedback on the Cane–Zebiak model ENSO. J. Climate, 12 , 27872807.

  • Fedorov, A. V., and G. H. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14 , 30863101.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Harrison, D. E., and N. K. Larking, 1996: The COADS sea level pressure signal: A near-global El Niño composite and time series view, 1946–93. J. Climate, 9 , 30253055.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2002: Dipoles, temperature gradients, and tropical climate anomalies. Bull. Amer. Meteor. Soc., 83 , 735740.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kang, I-S., and Coauthors, 2002: Intercomparison of GCM simulated anomalies associated with the 1997–98 El Niño. J. Climate, 15 , 27912805.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., K. Miyakoda, and S. Yang, 2002: Recent changes in the connection from the Asian monsoon to ENSO. J. Climate, 15 , 12031215.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., M. J. Fennessy, V. Krishnamurthy, and L. Marx, 2004: An evaluation of the apparent interdecadal shift in the tropical divergent circulation in the NCEP–NCAR reanalysis. J. Climate, 17 , 349361.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and J. Shukla, 2000: Influence of the Indian summer monsoon on ENSO. Quart. J. Roy. Meteor. Soc., 126 , 127.

  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. P. Kirtman, 2003: Variability of the Indian Ocean: Relation to monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 129 , 16231646.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. A. Knaff, 2000: How much skill was there in forecasting the very strong 1997–98 El Niño. Bull. Amer. Meteor. Soc., 81 , 21072119.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoon as simulated in GCM experiments. J. Climate, 13 , 42874309.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J., and R. B. Rood, 1996: Multidimensional flux from Lagrangian transport. Mon. Wea. Rev., 124 , 20462086.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • McCreary, J. P., 1976: Eastern tropical ocean response to changing wind systems: With application to El Niño. J. Phys. Oceanogr., 6 , 632645.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , 1666316682.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J. J., S. A. Clough, E. J. Mlawer, and M. J. Iacono, 1998: Impact of a validated radiative transfer scheme, RRTM, on the ECMWF model climate and 10-day forecasts. ECMWF Tech. Memo. 252, Reading, United Kingdom, 47 pp.

  • Murtugudde, R., and A. J. Busalacchi, 1999: Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. J. Climate, 12 , 23002326.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., B. N. Goswami, and A. J. Busalacchi, 1998: Air–sea interaction in the southern tropical Indian Ocean and its relations to interannual variability of the monsoon over India. Proc. Int. Conf. on Monsoon and Hydrologic Cycle, Kyongju, Korea, Korean Meteorological Society.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. P. McCreary, and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–98. J. Geophys. Res., 105 , 32953306.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1984: The Southern Oscillation and Indonesian sea surface temperature. Mon. Wea. Rev., 112 , 424432.

  • Nitta, T., and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67 , 375383.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28 , 11171133.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., D. Cadet, and D. Gutzler, 1986: Interannual displacements of convection and surface circulation over the equatorial Indian Ocean. Quart. J. Roy. Meteor. Soc., 112 , 4346.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of desert. Quart. J. Roy. Meteor. Soc., 122 , 13851404.

  • Roeckner, E., and Coauthors, 1996: Atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorlogie Rep. 218, Hamburg, Germany, 82 pp.

  • Roeckner, E., and Coauthors, 2003: Atmospheric general circulation model ECHAM5: Part I. Max-Planck-Institut für Meteorlogie Rep. 349, Hamburg, Germany, 140 pp.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1985: Vorticity balances in the tropics during the 1982–83 El Niño–Southern Oscillation event. Quart. J. Roy. Meteor. Soc., 111 , 261278.

    • Search Google Scholar
    • Export Citation
  • Schulz, J. P., L. Dumenil, and J. Polcher, 2001: On the land surface atmosphere coupling and its impact in a single column atmospheric model. J. Appl. Meteor., 40 , 642663.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1984: Predictability of time averages: Part II. The influence of the boundary forcing. Problems and Prospects in Long and Medium Range Weather Forecasting, D. M. Burridge and E. Kallen, Eds., Springer-Verlag, 155–206.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and J. M. Wallace, 1983: Numerical simulation of the atmospheric response to equatorial Pacific sea surface temperature anomalies. J. Atmos. Sci., 40 , 16131630.

    • Search Google Scholar
    • Export Citation
  • Su, H., J. D. Neelin, and C. Chou, 2001: Tropical teleconnection and local response to SST anomalies during the 1997–98 El Niño. J. Geophys. Res., 106 , 2002520043.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in a large-scale model. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and F. F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett., 29 .1003, doi:10.029/2001GL013369.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., F. F. Jin, and J. Abshagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60 , 152165.

  • Tompkins, A., 2002: A prognostic parameterization for the sub-grid scale variability of water vapor and clouds in a large-scale model and its use to diagnose cloud cover. J. Atmos. Sci., 59 , 19171942.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstor, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 , 1429114324.

    • Search Google Scholar
    • Export Citation
  • Wainer, I., and P. J. Webster, 1996: Monsoon/El Niño–Southern Oscillation relationships in a simple coupled ocean–atmosphere model. J. Geophys. Res., 101 , 2559925614.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103 , 1424114259.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8 , 267285.

  • Wang, B., and S. I. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28 , 37093712.

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13 , 15171536.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126 , 33433369.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F. F. Jin, 2003: A moist linear baroclinic model: Coupled dynamical–convective response to El Niño. J. Climate, 16 , 11211139.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local steady flow. Mon. Wea. Rev., 100 , 518541.

  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled oceanic–atmospheric dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24 , 779782.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO—How does 1997/98 rank? Weather, 53 , 315324.

  • Wu, R., and B. P. Kirtman, 2003: On the impacts of the Indian summer monsoon on ENSO in a coupled GCM. Quart. J. Roy. Meteor. Soc., 129 , 34393468.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and S-P. Xie, 2003: On equatorial Pacific surface wind changes around 1977: NCEP–NCAR reanalysis versus COADS observation. J. Climate, 16 , 167173.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004a: Impacts of the Indian Ocean on the Indian summer monsoon–ENSO relationship. J. Climate, 17 , 30373054.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004b: Understanding the impacts of the Indian Ocean on ENSO in a coupled GCM. J. Climate, 17 , 40194031.

  • Xie, P., and P. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15 , 867878.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. Behera, S. A. Rao, Z. Guan, K. Ashok, and N. H. Saji, 2003: Comments on “Dipoles, temperature gradients, and tropical climate anomalies.”. Bull. Amer. Meteor. Soc., 84 , 14181422.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of Indian Ocean on ENSO cycles. Geophys. Res. Lett., 29 .1204, doi:10.1029/2001GL014098.

    • Search Google Scholar
    • Export Citation
  • Yu, L. S., and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophys. Res. Lett., 26 , 735738.

    • Search Google Scholar
    • Export Citation
  • Yu, L. S., and M. M. Rienecker, 2000: Indian Ocean warming of 1997–1998. J. Geophys. Res., 105 , 1692316939.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3392 958 79
PDF Downloads 2136 387 22