The NAO, the AO, and Global Warming: How Closely Related?

Judah Cohen Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Judah Cohen in
Current site
Google Scholar
PubMed
Close
and
Mathew Barlow Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Mathew Barlow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The North Atlantic Oscillation (NAO) and the closely related Arctic Oscillation (AO) strongly affect Northern Hemisphere (NH) surface temperatures with patterns reported similar to the global warming trend. The NAO and AO were in a positive trend for much of the 1970s and 1980s with historic highs in the early 1990s, and it has been suggested that they contributed significantly to the global warming signal. The trends in standard indices of the AO, NAO, and NH average surface temperature for December–February, 1950–2004, and the associated patterns in surface temperature anomalies are examined. Also analyzed are factors previously identified as relating to the NAO, AO, and their positive trend: North Atlantic sea surface temperatures (SSTs), Indo–Pacific warm pool SSTs, stratospheric circulation, and Eurasian snow cover.

Recently, the NAO and AO indices have been decreasing; when these data are included, the overall trends for the past 30 years are weak to nonexistent and are strongly dependent on the choice of start and end date. In clear distinction, the wintertime hemispheric warming trend has been vigorous and consistent throughout the entire period. When considered for the whole hemisphere, the NAO/AO patterns can also be distinguished from the trend pattern. Thus the December–February warming trend may be distinguished from the AO and NAO in terms of the strength, consistency, and pattern of the trend. These results are insensitive to choice of index or dataset. While the NAO and AO may contribute to hemispheric and regional warming for multiyear periods, these differences suggest that the large-scale features of the global warming trend over the last 30 years are unrelated to the AO and NAO. The related factors may also be clearly distinguished, with warm pool SSTs linked to the warming trend, while the others are linked to the NAO and AO.

Corresponding author address: Judah Cohen, Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421. Email: jcohen@aer.com

Abstract

The North Atlantic Oscillation (NAO) and the closely related Arctic Oscillation (AO) strongly affect Northern Hemisphere (NH) surface temperatures with patterns reported similar to the global warming trend. The NAO and AO were in a positive trend for much of the 1970s and 1980s with historic highs in the early 1990s, and it has been suggested that they contributed significantly to the global warming signal. The trends in standard indices of the AO, NAO, and NH average surface temperature for December–February, 1950–2004, and the associated patterns in surface temperature anomalies are examined. Also analyzed are factors previously identified as relating to the NAO, AO, and their positive trend: North Atlantic sea surface temperatures (SSTs), Indo–Pacific warm pool SSTs, stratospheric circulation, and Eurasian snow cover.

Recently, the NAO and AO indices have been decreasing; when these data are included, the overall trends for the past 30 years are weak to nonexistent and are strongly dependent on the choice of start and end date. In clear distinction, the wintertime hemispheric warming trend has been vigorous and consistent throughout the entire period. When considered for the whole hemisphere, the NAO/AO patterns can also be distinguished from the trend pattern. Thus the December–February warming trend may be distinguished from the AO and NAO in terms of the strength, consistency, and pattern of the trend. These results are insensitive to choice of index or dataset. While the NAO and AO may contribute to hemispheric and regional warming for multiyear periods, these differences suggest that the large-scale features of the global warming trend over the last 30 years are unrelated to the AO and NAO. The related factors may also be clearly distinguished, with warm pool SSTs linked to the warming trend, while the others are linked to the NAO and AO.

Corresponding author address: Judah Cohen, Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421. Email: jcohen@aer.com

Save
  • Bader, J., and M. Latif, 2003: The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys. Res. Lett., 30 .2169, doi:10.1029/2003GL018426.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104 , 3093730946.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294 , 581584.

  • Barnston, A. G., and Coauthors, 1999: Review of skill of CPC’s long-lead seasonal U.S. predictions since 1995. Proc. 24th Annual Climate Diagnostics and Prediction Workshop, Tucson, AZ, 13–16.

  • Bitz, C. M., and G. H. Roe, 2004: A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Climate, 17 , 36233632.

  • Bretherton, C. S., and D. S. Battisti, 2000: An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys. Res. Lett., 27 , 767770.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66 , 83109.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and M. J. Iacono, 1995: Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res., 100 , D8,. 1651916535.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26 , 345348.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., D. Salstein, and K. Saito, 2002: A dynamical framework to understand and predict the major Northern Hemisphere mode. Geophys. Res. Lett., 29 .1412–, doi:10.1029/2001GL014117.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., A. Frei, and R. Rosen, 2005: Evaluation of the role of boundary conditions in AMIP-2 simulations of the NAO. J. Climate, 18 , 973981.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6 , 17431753.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: The recent trend and variance increase of the annular mode. J. Climate, 15 , 8894.

  • Fyfe, J. C., G. J. Boer, and G. M. Flato, 1999: The Arctic and Antarctic Oscillations and their projected changes under global warming. Geophys. Res. Lett., 26 , 16011604.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., G. C. Hegerl, M. R. Allen, and P. A. Stott, 2000: Implications of changes in the Northern Hemisphere circulation for the detection of anthropogenic climate change. Geophys. Res. Lett., 27 , 993996.

    • Search Google Scholar
    • Export Citation
  • Gong, G., D. Entekhabi, and J. Cohen, 2003: Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J. Climate, 16 , 38173931.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104 , 3099731022.

  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292 , 9092.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23 , 665668.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., No. 134, Amer. Geophys. Union, 1–36.

  • Jones, P. D., 1994: Hemispheric surface air temperature variations: A reanalysis and an update to 1993. J. Climate, 7 , 17941802.

  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extended revision and update to 2001. J. Climate, 16 , 206223.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. Jonsson, and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Climatol., 17 , 14331450.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and B. Sinha, 2001: Can a state of the art atmospheric general circulation model reproduce recent NAO related variability at the air–sea interface? Geophys. Res. Lett., 28 , 45434546.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., S. A. Klein, and D. J. Seidel, 2003: Temporal homogenization of monthly radiosonde temperature data. Part II: Trends, sensitivities, and MSU comparison. J. Climate, 16 , 241262.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., K. Krüger, J. L. Sabutis, S. A. Sena, and S. Pawson, 2005: The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J. Geophys. Res., 110 .D04107, doi:10.1029/2004JD005367.

    • Search Google Scholar
    • Export Citation
  • Mehta, V. M., M. J. Suarez, J. V. Manganello, and T. L. Delworth, 2000: Oceanic influence on the North Atlantic oscillation and associated Northern Hemisphere climate variations: 1959–1993. Geophys. Res. Lett., 27 , 121124.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., D. J. Cavalieri, P. Gloerswen, H. J. Zwally, and J. C. Comiso, 1999: Arctic sea ice extents, areas and trends, 1978–1996. J. Geophys. Res., 104 , 2083720856.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., K. Labitzke, and S. Leder, 1998: Stepwise changes in stratosphere temperature. Geophys. Res. Lett., 25 , 21572160.

  • Plumb, R. A., and K. Semeniuk, 2003: Downward migration of extratropical zonal wind anomalies. J. Geophys. Res., 108 .4223, doi:10.1029/2002JD002773.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., 2001: Influence of ocean–atmosphere interaction on the Arctic Oscillation in two general circulation models. J. Climate, 14 , 32403254.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., F. Dewey, and R. Heim Jr., 1993: Northern Hemispheric snow cover: An update. Bull. Amer. Meteor. Soc., 74 , 16891696.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398 , 320323.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., J. E. Janowiak, and M. S. Halpert, 1985: The analysis and display of real time surface climate data. Mon. Wea. Rev., 113 , 11011106.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., Y. Yu, and G. A. Maykut, 1999: Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26 , 34693472.

  • Saito, K., and J. Cohen, 2003: The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys. Res. Lett., 30 .1302, doi:10.1029/2002GL016341.

    • Search Google Scholar
    • Export Citation
  • Saito, K., J. Cohen, and D. Entekhabi, 2001: Evolution in atmospheric response to early-season Eurasian snowcover anomalies. Mon. Wea. Rev., 129 , 27462760.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., L. Bengtsson, and Z-Z. Hu, 2003: Forcing of Northern Hemisphere climate trends. J. Atmos. Sci., 60 , 15041521.

  • Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo, 1999: Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399 , 452455.

    • Search Google Scholar
    • Export Citation
  • Spencer, H., and J. M. Slingo, 2003: The simulation of peak and delayed ENSO teleconnections. J. Climate, 16 , 17571774.

  • Sun, D-Z., 2003: A possible effect of an increase in the warm-pool SST on the magnitude of El Niño warming. J. Climate, 16 , 185205.

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296 , 895899.

  • Thompson, D. W. J., and D. J. Lorenz, 2004: The signature of the annular modes in the tropical troposphere. J. Climate, 17 , 43304342.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc, 71 , 988993.

    • Search Google Scholar
    • Export Citation
  • UNEP, 1999: Global environment outlook 2000. United Nations Environment Programme Rep., Earthscan Publications, London, United Kingdom, 398 pp. [Available online at www. unep.org/geo2000.].

  • Vinnikov, K. Y., and Coauthors, 1999: Global warming and Northern Hemisphere sea ice extent. Science, 286 , 19341937.

  • Wanner, H., S. Bronnimann, C. Casty, D. Gyalistras, J. Luterbacher, C. Schmutz, D. B. Stephenson, and E. Xoplaki, 2001: North Atlantic Oscillation: Concept and studies. Surv. Geophys., 22 , 321382.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Nitta, 1999: Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter. J. Climate, 12 , 494510.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Zorita, E., and F. Gonzalez-Rouco, 2000: Disagreement between predictions of the future behavior of the Arctic Oscillation as simulated in two different climate models: Implications for global warming. Geophys. Res. Lett., 27 , 17551758.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3471 1038 32
PDF Downloads 2090 463 18