The Total Meridional Heat Flux and Its Oceanic and Atmospheric Partition

Carl Wunsch Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Carl Wunsch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric meridional heat transport is inferred as a residual from the Earth Radiation Budget Experiment (ERBE) data and in situ oceanic estimates. Reversing the conventional approach of computing the ocean as an atmospheric model residual is done to permit calculation of a preliminary uncertainty estimate for the atmospheric flux. The structure of the ERBE errors is itself an important uncertainty. Total energy transport is almost indistinguishable from a hemispherically antisymmetric analytic function, despite the great asymmetry of the oceanic heat fluxes. ERBE data appear sufficiently noisy so that a considerable range of atmospheric transports remains possible: the maximum atmospheric value lies between 3 and 5 PW in the Northern Hemisphere, at one standard deviation, although the values are sensitive to the noise assumptions made here. The Northern Hemisphere ocean and atmosphere carry comparable poleward heat fluxes to about 28°N where the oceanic flux drops rapidly, but does not actually vanish until the oceanic surface area goes to zero. Within the estimated error bars, there is a remarkable antisymmetry about the equator of the combined ocean and atmospheric transports, despite the marked oceanic transport asymmetry.

Corresponding author address: Carl Wunsch, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139. Email: cwunsch@mit.edu

Abstract

Atmospheric meridional heat transport is inferred as a residual from the Earth Radiation Budget Experiment (ERBE) data and in situ oceanic estimates. Reversing the conventional approach of computing the ocean as an atmospheric model residual is done to permit calculation of a preliminary uncertainty estimate for the atmospheric flux. The structure of the ERBE errors is itself an important uncertainty. Total energy transport is almost indistinguishable from a hemispherically antisymmetric analytic function, despite the great asymmetry of the oceanic heat fluxes. ERBE data appear sufficiently noisy so that a considerable range of atmospheric transports remains possible: the maximum atmospheric value lies between 3 and 5 PW in the Northern Hemisphere, at one standard deviation, although the values are sensitive to the noise assumptions made here. The Northern Hemisphere ocean and atmosphere carry comparable poleward heat fluxes to about 28°N where the oceanic flux drops rapidly, but does not actually vanish until the oceanic surface area goes to zero. Within the estimated error bars, there is a remarkable antisymmetry about the equator of the combined ocean and atmospheric transports, despite the marked oceanic transport asymmetry.

Corresponding author address: Carl Wunsch, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139. Email: cwunsch@mit.edu

Save
  • Barkstrom, B., E. Harrison, G. Smith, R. Green, J. Kibler, and R. Cess, and the ERBE Science Team, 1989: Earth Radiation Budget Experiment (ERBE) archival and April 1985 results. Bull. Amer. Meteor. Soc., 70 , 12541262.

    • Search Google Scholar
    • Export Citation
  • Bess, T. D., and G. L. Smith, 1993: Earth radiation budget: Results of outgoing longwave radiation from Nimbus-7, NOAA-9, and ERBS satellites. J. Appl. Meteor., 32 , 813824.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 455–474.

    • Search Google Scholar
    • Export Citation
  • Carissimo, B. C., A. H. Oort, and T. H. Vonder Haar, 1985: Estimating the meridional energy transports in the atmosphere and ocean. J. Phys. Oceanogr., 15 , 8291.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., 2003: Error budget of inverse box models: The North Atlantic. J. Atmos. Oceanic Technol., 20 , 16411655.

  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16 , 696705.

    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and S. A. Josey, 2003: Inverse analysis adjustment of the SOC air–sea flux climatology uisng ocean heat transport constraints. J. Climate, 16 , 32743295.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78 , 197208.

  • Oort, A. H., and T. H. Vonder Haar, 1976: On the observed annual cycle in the ocean–atmosphere heat balance over the Northern Hemisphere. J. Phys. Oceanogr., 6 , 781800.

    • Search Google Scholar
    • Export Citation
  • Rieland, M., and E. Raschke, 1991: Diurnal variability of the Earth radiation budget—Sampling requirements, time integration aspects and error-estimates from the Earth Radiation Budget Experiment (ERBE). Theor. Appl. Climatol., 44 , 924.

    • Search Google Scholar
    • Export Citation
  • Roach, A. T., K. Aagaard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov, and M. Kulakov, 1995: Direct measurements of transport and water properties through the Bering Strait. J. Geophys. Res., 100 , 1843318457.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., K. Ueyoshi, W. B. Large, S. Josey, and C. Wunsch, 2004: Global sea surface flux estimates obtained through ocean data assimilation. J. Geophys. Res., 109 .C05023, doi:10.1029/2003JC002082.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2 , 123139.

  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans. Prentice-Hall, 1087 pp.

  • Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10 , 107134.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Trenberth, K. E., J. M. Caron, and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Climate Dyn., 17 , 259276.

    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T. H., and A. H. Oort, 1973: New estimate of annual poleward energy transport by Northern Hemisphere oceans. J. Phys. Oceanogr., 3 , 169172.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1999: Approximating the energy transport across oceanic sections. J. Geophys. Res., 104 , 79157920.

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., J. M. Toole, H. L. Bryden, R. A. Fine, W. J. Jenkins, and W. J. Bullister, 1996: The water masses and circulation at 10 degrees N in the Pacific. Deep-Sea Res., 43A , 501544.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1984: An eclectic Atlantic Ocean circulation model. Part I: The meridional flux of heat. J. Phys. Oceanogr., 14 , 17121733.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 437 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1354 394 35
PDF Downloads 1015 276 21