Multicentury Changes to the Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

G. Bala Atmospheric Science Division, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by G. Bala in
Current site
Google Scholar
PubMed
Close
,
K. Caldeira Atmospheric Science Division, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by K. Caldeira in
Current site
Google Scholar
PubMed
Close
,
A. Mirin Atmospheric Science Division, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by A. Mirin in
Current site
Google Scholar
PubMed
Close
,
M. Wickett Atmospheric Science Division, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by M. Wickett in
Current site
Google Scholar
PubMed
Close
, and
C. Delire ISE-M, Université Montpellier II, Montpellier, France

Search for other papers by C. Delire in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A coupled climate and carbon (CO2) cycle model is used to investigate the global climate and carbon cycle changes out to the year 2300 that would occur if CO2 emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By the year 2300, the global climate warms by about 8 K and atmospheric CO2 reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In this simulation, the rate of emissions peaks at over 30 Pg C yr−1 early in the twenty-second century. Even at the year 2300, nearly 50% of cumulative emissions remain in the atmosphere. Both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, these model projections suggest severe long-term consequences for global climate if all the fossil fuel carbon is ultimately released into the atmosphere.

Corresponding author address: Dr. G. Bala, Atmospheric Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550. Email: bala1@llnl.gov

Abstract

A coupled climate and carbon (CO2) cycle model is used to investigate the global climate and carbon cycle changes out to the year 2300 that would occur if CO2 emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By the year 2300, the global climate warms by about 8 K and atmospheric CO2 reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In this simulation, the rate of emissions peaks at over 30 Pg C yr−1 early in the twenty-second century. Even at the year 2300, nearly 50% of cumulative emissions remain in the atmosphere. Both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, these model projections suggest severe long-term consequences for global climate if all the fossil fuel carbon is ultimately released into the atmosphere.

Corresponding author address: Dr. G. Bala, Atmospheric Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550. Email: bala1@llnl.gov

Save
  • Amthor, J. S., 1984: The role of maintenance respiration in plant growth. Plant Cell Environ., 7 , 561569.

  • Bennike, O., and J. Bocher, 1990: Forest–tundra neighbouring the North Pole: Plant and insect remains from the Plio-Pleistocene Kap Kobenhavn formation, north Greenland. Arctic, 43 , 331338.

    • Search Google Scholar
    • Export Citation
  • Bennike, O., and J. Bocher, 1994: Land biotas of the last interglacial/glacial cycle on Jameson Land, East Greenland. Boreas, 23 , 479487.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. M. Cox, M. Collins, P. Harris, C. Huntingford, and C. D. Jones, 2004: The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global warming. Theor. Appl. Climatol., 78 , 157175.

    • Search Google Scholar
    • Export Citation
  • Caldeira, K., and M. Wickett, 2003: Oceanography: Anthropogenic carbon and ocean pH. Nature, 425 , 365.

  • Cao, M., and F. I. Woodward, 1998: Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393 , 249252.

    • Search Google Scholar
    • Export Citation
  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7 , 357373.

    • Search Google Scholar
    • Export Citation
  • Cramer, W., A. Bondeau, S. Schaphoff, W. Lucht, B. Smith, and S. Sitch, 2004: Tropical forests and the global carbon cycle: Impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos. Trans. Roy. Soc. London, 359 , 311343.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 53 , 107136.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., M. Ribas-Carbo, and J. A. Berry, 1992: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19 , 519538.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled model. Nature, 408 , 184187.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78 , 137156.

    • Search Google Scholar
    • Export Citation
  • Curtis, P. S., 1996: A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ., 19 , 127137.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., and R. D. Smith, 1994: Implicit free-surface method for the Bryan–Cox–Semtner ocean model. J. Geophys. Res., 99 , 79918014.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., S. V. Caemmerer, and J. A. Berry, 1980: A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta, 149 , 7890.

    • Search Google Scholar
    • Export Citation
  • Field, C., R. Jackson, and H. Mooney, 1995: Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell Environ., 18 , 12141225.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance and vegetation dynamics. Global Biogeochem. Cycles, 10 , 603628.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., L. Bopp, P. Ciais, J. L. Dufresne, L. Fairhead, H. LeTruet, P. Monfray, and J. Orr, 2001: Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 28 , 15431546.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., J-L. Dufresne, P. M. Cox, and P. Rayner, 2003: How positive is the feedback between climate change and the carbon cycle? Tellus, 55B , 692700.

    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., S. Thompson, A. Mirin, M. Wickett, K. Caldeira, and C. Delire, 2005: Increase of carbon cycle feedback with climate sensitivity: Results from a coupled climate and carbon cycle model. Tellus, 57B , 153163.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31 .L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., and H. L. Bryden, 1982: Direct estimates of ocean heat transport. Deep-Sea Res., 29 , 339359.

  • Hayhoe, K., H. S. Kheshgi, A. K. Jain, and D. J. Wuebbles, 2002: Substitution of natural gas for coal: Climatic effects of utility sector emissions. Climate Change, 54 , 107139.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., L. G. Meira Filho, D. J. Griggs, and K. Maskell, Eds. 1997: An introduction to simple climate models used in the IPCC second assessment report. IPCC Tech. Paper II, IPCC, Geneva, Switzerland, 54 pp. [Available online at http://www.undp.org/cc/pdf/Help%20Desk/IPCCtechpap2. pdf.].

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Houghton, R., 2003: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus, 55B , 378390.

    • Search Google Scholar
    • Export Citation
  • Hungate, B. A., J. S. Dukes, M. R. Shaw, Y. Luo, and C. B. Field, 2003: Nitrogen and climate change. Science, 302 , 15121513.

  • Energy Information Administration, 2004: International energy outlook 2004. Office of Integrated Analysis and Forecasting, U.S. Department of Energy Rep. DOE/EIA-0484, Washington, DC, 244 pp.

  • Joos, F., I. C. Prentice, S. Sitch, R. Meyer, G. Hooss, G-K. Plattner, S. Gerber, and K. Hasselmann, 2001: Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem. Cycles, 15 , 891907.

    • Search Google Scholar
    • Export Citation
  • Kheshgi, H. S., 2004: Ocean carbon sink duration under stabilization of atmospheric CO2—A 1000-year time scale. Geophys. Res. Lett., 31 .L20204, doi:10.1029/2004GL020612.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. Y. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, National Center for Atmospheric Research, Boulder, CO, 152 pp.

  • King, A. W., W. M. Post, and S. D. Wullschleger, 1997: The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2. Climate Change, 35 , 199227.

    • Search Google Scholar
    • Export Citation
  • Kirschbaum, M. U. F., 2000: Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 48 , 2151.

    • Search Google Scholar
    • Export Citation
  • Koch, G. W., and H. A. Mooney, 1996: Response of terrestrial ecosystems to elevated CO2: A synthesis and summary. Carbon Dioxide and Terrestrial Ecosystems, G. W. Koch and H. A. Mooney, Eds., Academic Press, 415–429.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and Coauthors, 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14 , 795825.

    • Search Google Scholar
    • Export Citation
  • Landis, J. R., and G. G. Koch, 1977: The measurement of observer agreement for categorical date. Biometrics, 33 , 159174.

  • Lloyd, J., and J. A. Taylor, 1994: On the temperature-dependence of soil respiration. Funct. Ecol., 8 , 315323.

  • Maier-Reimer, E., 1993: Bigeochemical cycles in an ocean general-circulation model—Preindustrial tracer distributions. Global Biogeochem. Cycles, 7 , 645677.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., R. D. Smith, A. J. Semtner, and A. J. Malone, 1998: Global eddy-resolving ocean simulations driven by 1985–1995 atmospheric winds. J. Geophys. Res., 103 , 3082530853.

    • Search Google Scholar
    • Export Citation
  • Mathews, H. D., A. J. Weaver, and K. J. Meissner, 2005: Terrestrial carbon cycle dynamics under recent and future climate change. J. Climate, 18 , 16091628.

    • Search Google Scholar
    • Export Citation
  • McGuire, A. D., and Coauthors, 2001: Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 15 , 183206.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, J. M. Arblaster, and A. Hu, 2004: Factors affecting climate sensitivity in global coupled models. J. Climate, 17 , 15841596.

    • Search Google Scholar
    • Export Citation
  • Metz, B., O. Davidson, R. Swart, and J. Pan, 2001: Climate Change 2001: Mitigation. Cambridge University Press, 752 pp.

  • Monsrrud, R. A., 1990: Methods for comparing global vegetation maps. IIASA Tech. Rep. WP-90-40, International Institute for Applied Systems Analysis, Laxenburg, Austria, 31 pp.

  • Mooney, H. A., and Coauthors, 1999: Ecosystem physiology responses to global change. Implications of Global Change for Natural and Managed Ecosystems. A synthesis of GCTE and Related Research, B. H. Walker et al., Eds., IGBP Book Series, Vol. 4, Cambridge University Press, 141–189.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., 1995: Transient response of the Hadley Centre coupled ocean–atmosphere model to increasing carbon dioxide. Part III: Analysis of global-mean response using simple models. J. Climate, 8 , 496514.

    • Search Google Scholar
    • Export Citation
  • Nadelhoffer, K. J., B. A. Emmett, P. Gundersen, O. J. Kjonaas, C. J. Koopmans, P. Schleppi, A. Tietema, and R. F. Wright, 1999: Nitrogen makes a minor contribution to carbon sequestration in temperate forests. Nature, 398 , 145148.

    • Search Google Scholar
    • Export Citation
  • Najjar, R. G., and J. C. Orr, 1999: Biotic how-to. Revision 1.7, Ocean Carbon-cycle Model Intercomparison Project (OCMIP). [Available online at http://www.ipsl.jussieu.fr/OCMIP/phase2/simulations/Biotic/HOWTO-Biotic.html.].

  • Nakicenovic, N., and R. Swart, 2000: Special Report on Emission Scenarios. Cambridge University Press, 570 pp.

  • Nof, D., 2002: Is there a meridional overturning cell in the Pacific and Indian Oceans? J. Phys. Oceanogr., 32 , 19471959.

  • Nowak, R. S., D. S. Ellsworth, and S. D. Smith, 2004: Tansley review: Functional responses of plants to elevated atmospheric CO2—Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol., 162 , 253280.

    • Search Google Scholar
    • Export Citation
  • Oren, R., and Coauthors, 2001: Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature, 411 , 469477.

    • Search Google Scholar
    • Export Citation
  • Orr, J. C., and J-C. Dutay, 1999: OCMIP mid-project workshop. Research GAIM Newsletter, Vol. 3, No. 1, 4–5.

  • Orr, J. C., and Coauthors, 2001: Estimates of anthropogenic carbon uptake from four 3-D global ocean models. Global Biogeochem. Cycles, 15 , 4360.

    • Search Google Scholar
    • Export Citation
  • Owensby, C. E., J. M. Ham, A. K. Knapp, and L. M. Auen, 1999: Biomass production and species composition change in a tall grass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biol., 5 , 497506.

    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., M. Heimann, and S. Sitch, 2000: The carbon balance of the terrestrial biosphere; ecosystem models and atmospheric observations. Ecol. Appl., 10 , 15531573.

    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., and Coauthors, 2001: The carbon cycle and atmospheric carbon dioxide. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 183–237.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13 , 9971027.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., J. A. Foley, J. Norman, and K. McSweeney, 2002: The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change. Global Ecol. Biogeogr., 11 , 377392.

    • Search Google Scholar
    • Export Citation
  • Root, T. L., and S. H. Schneider, 1993: Can large-scale climatic models be linked with multiscale ecological studies? Conserv. Biol., 7 , 2,. 256270.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305 , 367371.

  • Sarmiento, J. L., and C. Le Quere, 1996: Oceanic carbon dioxide uptake in a model of century-scale global warming. Science, 274 , 13461350.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., T. C. Hughes, R. J. Stouffer, and S. Manabe, 1998: Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393 , 245249.

    • Search Google Scholar
    • Export Citation
  • Schimel, D. S., 1998: The carbon equation. Nature, 393 , 208209.

  • Senior, C. A., and J. F. B. Mitchell, 2000: The time dependence of climate sensitivity. Geophys. Res. Lett., 27 , 26852688.

  • Shaw, M. R., E. S. Zavaleta, N. R. Chiariello, E. E. Cleland, H. A. Mooney, and C. B. Field, 2002: Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298 , 19871990.

    • Search Google Scholar
    • Export Citation
  • Thompson, S., B. Govindasamy, A. Mirin, K. Caldeira, C. Delire, J. Milovich, M. Wickett, and D. Erickson, 2004: Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys. Res. Lett., 31 .L23211, doi:10.1029/2004GL021239.

    • Search Google Scholar
    • Export Citation
  • Tjoelker, M. G., J. Oleksyn, and P. B. Reich, 2001: Modelling respiration of vegetation: Evidence for a general temperature-dependent Q(10). Global Change Biol., 7 , 223230.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel Climate Model (PCM) control and transient simulations. Climate Dyn., 16 , 755774.

  • Zeng, N., H. Qian, E. Munoz, and R. Iacono, 2004: How strong is carbon cycle-climate feedback under global warming? Geophys. Res. Lett, 31 .L20203, doi:10.1029/2004GL020904.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1024 313 18
PDF Downloads 592 92 5