Statistical Correction of Tropical Pacific Sea Surface Temperature Forecasts

Michael K. Tippett International Research Institute for Climate Prediction, Palisades, New York

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
,
Anthony G. Barnston International Research Institute for Climate Prediction, Palisades, New York

Search for other papers by Anthony G. Barnston in
Current site
Google Scholar
PubMed
Close
,
David G. DeWitt International Research Institute for Climate Prediction, Palisades, New York

Search for other papers by David G. DeWitt in
Current site
Google Scholar
PubMed
Close
, and
Rong-Hua Zhang Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Rong-Hua Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper is about the statistical correction of systematic errors in dynamical sea surface temperature (SST) prediction systems using linear regression approaches. The typically short histories of model forecasts create difficulties in developing regression-based corrections. The roles of sample size, predictive skill, and systematic error are examined in evaluating the benefit of a linear correction. It is found that with the typical 20 yr of available model SST forecast data, corrections are worth performing when there are substantial deviations in forecast amplitude from that determined by correlation with observations. The closer the amplitude of the uncorrected forecasts is to the optimum squared error-minimizing amplitude, the less likely is a correction to improve skill. In addition to there being less “room for improvement,” this rule is related to the expected degradation in out-of-sample skill caused by sampling error in the estimate of the regression coefficient underlying the correction.

Application of multivariate [canonical correlation analysis (CCA)] correction to three dynamical SST prediction models having 20 yr of data demonstrates improvement in the cross-validated skills of tropical Pacific SST forecasts through reduction of systematic errors in pattern structure. Additional beneficial correction of errors orthogonal to the CCA modes is achieved on a per-gridpoint basis for features having smaller spatial scale. Until such time that dynamical models become freer of systematic errors, statistical corrections such as those shown here can make dynamical SST predictions more skillful, retaining their nonlinear physics while also calibrating their outputs to more closely match observations.

Corresponding author address: Dr. Michael K. Tippett, International Research Institute for Climate Prediction, Lamont Campus, 61 Route 9W, Palisades, NY 10964-8000. Email: tippett@iri.columbia.edu

Abstract

This paper is about the statistical correction of systematic errors in dynamical sea surface temperature (SST) prediction systems using linear regression approaches. The typically short histories of model forecasts create difficulties in developing regression-based corrections. The roles of sample size, predictive skill, and systematic error are examined in evaluating the benefit of a linear correction. It is found that with the typical 20 yr of available model SST forecast data, corrections are worth performing when there are substantial deviations in forecast amplitude from that determined by correlation with observations. The closer the amplitude of the uncorrected forecasts is to the optimum squared error-minimizing amplitude, the less likely is a correction to improve skill. In addition to there being less “room for improvement,” this rule is related to the expected degradation in out-of-sample skill caused by sampling error in the estimate of the regression coefficient underlying the correction.

Application of multivariate [canonical correlation analysis (CCA)] correction to three dynamical SST prediction models having 20 yr of data demonstrates improvement in the cross-validated skills of tropical Pacific SST forecasts through reduction of systematic errors in pattern structure. Additional beneficial correction of errors orthogonal to the CCA modes is achieved on a per-gridpoint basis for features having smaller spatial scale. Until such time that dynamical models become freer of systematic errors, statistical corrections such as those shown here can make dynamical SST predictions more skillful, retaining their nonlinear physics while also calibrating their outputs to more closely match observations.

Corresponding author address: Dr. Michael K. Tippett, International Research Institute for Climate Prediction, Lamont Campus, 61 Route 9W, Palisades, NY 10964-8000. Email: tippett@iri.columbia.edu

Save
  • Allen, M. R., and L. A. Smith, 1997: Optimal filtering in singular spectrum analysis. Phys. Lett., 234 , 419428.

  • Barlow, M., H. Cullen, and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian ocean precipitation. J. Climate, 15 , 697700.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1981: Statistical prediction of North American air temperatures from Pacific predictions. Mon. Wea. Rev., 109 , 10211041.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115 , 18251850.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., 1994: Linear statistical short-term climate predictive skill in the Northern Hemisphere. J. Climate, 7 , 15131564.

  • Barnston, A. G., and H. M. Van den Dool, 1993: A degeneracy in cross-validated skill in regression-based forecasts. J. Climate, 6 , 963977.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. H. Glantz, and Y. He, 1999: Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and the 1998 La Niña onset. Bull. Amer. Meteor. Soc., 80 , 217243.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., U. Schlese, E. Roeckner, M. Latif, T. Barnett, and N. Graham, 1993: A two tiered approach to long-range climate forecasting. Science, 261 , 10261029.

    • Search Google Scholar
    • Export Citation
  • Bunke, O., and B. Droge, 1984: Bootstrap and cross-validation estimates of the prediction error for linear regression models. Ann. Stat., 12 , 14001424.

    • Search Google Scholar
    • Export Citation
  • Chang, P., R. Saravanan, L. Ji, and G. C. Hegerl, 2000: The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J. Climate, 13 , 21952216.

    • Search Google Scholar
    • Export Citation
  • Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19 , 13331347.

  • DeWitt, D. G., 2005: Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon. Wea. Rev., 133 , 29722995.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Harper, S. Philander, B. Winter, and A. Wittenberg, 2003: How predictable is El Niño? Bull. Amer. Meteor. Soc., 84 , 911919.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski, R. Basher, and M. A. Cane, 2001: Current approaches to seasonal-to-interannual climate prediction. Int. J. Climatol., 21 , 11111152.

    • Search Google Scholar
    • Export Citation
  • Gong, X., A. G. Barnston, and M. N. Ward, 2003: The effect of spatial aggregation on the skill of seasonal precipitation forecasts. J. Climate, 18 , 30593071.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109 , 813829.

    • Search Google Scholar
    • Export Citation
  • Ji, M., A. Kumar, and A. Leetma, 1994: A multiseason climate forecast system at the National Meteorological Center. Bull. Amer. Meteor. Soc., 75 , 569577.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N., and R. Kleeman, 2002: On the annual cycle of the zonal currents in the equatorial Pacific. J. Geophys. Res., 107 .3093, doi:10.1029/2000JC000711.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 2003: The COLA anomaly coupled model: Ensemble ENSO prediction. Mon. Wea. Rev., 131 , 23242341.

  • Landman, W. A., and S. J. Mason, 2001: Forecasts of near-global sea surface temperatures using canonical correlation analysis. J. Climate, 14 , 38193833.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., 1990: Variability of skill of long-range forecasts and implications for their use and value. Bull. Amer. Meteor. Soc., 71 , 300309.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., L. Goddard, N. E. Graham, E. Yulaeva, L. Sun, and P. A. Arkin, 1999: The IRI seasonal climate prediction system and the 1997/98 El Niño. Bull. Amer. Meteor. Soc., 80 , 18531873.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, A298 , 603635.

    • Search Google Scholar
    • Export Citation
  • Metzger, S., M. Latif, and K. Fraedrich, 2004: Combining ENSO forecasts: A feasibility study. Mon. Wea. Rev., 132 , 456472.

  • Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Climate Appl. Meteor., 26 , 15891600.

  • Montgomery, D. C., and E. A. Peck, 1992: Introduction to Linear Regression Analysis. 2d ed. Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, 527 pp.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 668 pp.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Tech. Rep. 218, Max-Planck Institute for Meteorology, Hamburg, Germany, 90 pp.

  • Ropelewski, C., and M. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., D. G. DeWitt, A. Rosati, B. P. Kirtman, L. Ji, and J. J. Tribbia, 2003: Retrospective ENSO forecasts: Sen sitivity to atmospheric model and ocean resolution. Mon. Wea. Rev., 131 , 30383060.

    • Search Google Scholar
    • Export Citation
  • Shao, J., 1993: Linear model selection by cross-validation. J. Amer. Stat. Assoc., 88 , 486494.

  • Shukla, J., 1998: Predictability in the midst of chaos: A scientific basis for climate forecasting. Science, 282 , 728731.

  • Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. A. Balmaseda, 1998: Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature, 392 , 370373.

    • Search Google Scholar
    • Export Citation
  • Terray, L., A. Piacentini, and S. Valcke, 1999: OASIS 2.3: Ocean Atmosphere Sea Ice Soil: User’s guide. Tech. Rep. TR/CMGC/99/37, CERFACS, Toulouse, France, 88 pp. [Available online at http://www.cerfacs.fr/globc/publication.html.].

  • Tippett, M. K., L. Goddard, and A. G. Barnston, 2005: Statistical–dynamical seasonal forecasts of central-southwest Asia winter precipitation. J. Climate, 18 , 18311843.

    • Search Google Scholar
    • Export Citation
  • Xue, Y. A., A. Leetma, and M. Ji, 2000: ENSO predictions with Markov models: The impact of sea level. J. Climate, 13 , 849871.

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zhang, R-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30 .2112, doi:10.1029/2003GL018010.

    • Search Google Scholar
    • Export Citation
  • Zhang, R-H., R. Kleeman, S. E. Zebiak, N. Keenlyside, and S. Raynaud, 2005a: An empirical parameterization of subsurface entrainment temperature for improved SSTA simulations in an intermediate ocean model. J. Climate, 18 , 350371.

    • Search Google Scholar
    • Export Citation
  • Zhang, R-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2005b: Retrospective El Niño forecasts using an improved intermediate coupled model. Mon. Wea. Rev., 133 , 27772802.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 490 326 35
PDF Downloads 154 37 4