Interannual Variability of Deep-Layer Hydrologic Memory and Mechanisms of Its Influence on Surface Energy Fluxes

Geremew G. Amenu Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Geremew G. Amenu in
Current site
Google Scholar
PubMed
Close
,
Praveen Kumar Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Praveen Kumar in
Current site
Google Scholar
PubMed
Close
, and
Xin-Zhong Liang Illinois State Water Survey, Department of Natural Resources, University of Illinois at Urbana–Champaign, Champaign, Illinois

Search for other papers by Xin-Zhong Liang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The characteristics of deep-layer terrestrial memory are explored using observed soil moisture data and simulated soil temperature from the Illinois Climate Network stations. Both soil moisture and soil temperature are characterized by exponential decay in amplitude, linear lag in phase, and increasing persistence with depth. Using spectral analysis, four dominant low-frequency modes are identified in the soil moisture variability. These signals have periods of about 12, 17, 34, and 60 months, which correspond to annual cycle, (4/3) ENSO, quasi-biennial (QB) ENSO, and quasi-quadrennial (QQ) ENSO signals, respectively. For deep layers, the interannual modes are dominant over the annual cycle, and vice versa for the near-surface layer. There are inherently two mechanisms by which deep-layer moisture impacts the surface fluxes. First, its temporal variability sets the lower boundary condition for the transfer of moisture and heat fluxes from the surface. Second, this temporal variability influences the uptake of moisture by plant roots, resulting in the variability of the transpiration and, therefore, the entire energy balance. Initial results suggest that this second mechanism may be more predominant.

Corresponding author address: Dr. Praveen Kumar, Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801. Email: kumar1@uiuc.edu

Abstract

The characteristics of deep-layer terrestrial memory are explored using observed soil moisture data and simulated soil temperature from the Illinois Climate Network stations. Both soil moisture and soil temperature are characterized by exponential decay in amplitude, linear lag in phase, and increasing persistence with depth. Using spectral analysis, four dominant low-frequency modes are identified in the soil moisture variability. These signals have periods of about 12, 17, 34, and 60 months, which correspond to annual cycle, (4/3) ENSO, quasi-biennial (QB) ENSO, and quasi-quadrennial (QQ) ENSO signals, respectively. For deep layers, the interannual modes are dominant over the annual cycle, and vice versa for the near-surface layer. There are inherently two mechanisms by which deep-layer moisture impacts the surface fluxes. First, its temporal variability sets the lower boundary condition for the transfer of moisture and heat fluxes from the surface. Second, this temporal variability influences the uptake of moisture by plant roots, resulting in the variability of the transpiration and, therefore, the entire energy balance. Initial results suggest that this second mechanism may be more predominant.

Corresponding author address: Dr. Praveen Kumar, Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801. Email: kumar1@uiuc.edu

Save
  • Barnett, T. P., 1991: The interaction of multiple time scales in the tropical climate system. J. Climate, 4 , 269285.

  • Blackman, R. B., and J. W. Tukey, 1958: The Measurement of Power Spectra from the Point of View of Communication Engineering. Dover, 190 pp.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1996: A land surface model (LSM version 2.1) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417 1 STR, Boulder, CO, 150 pp. [Available online at http://www.cgd.ucar.edu/tss/clm/.].

  • Broomhead, D. S., and G. King, 1986: Extracting qualitative dynamics from experimental data. Physica D, 20 , 217236.

  • Brutsaert, W. H., 1975: On a derivable formula for long-wave radiation from clear skies. Water Resour. Res., 11 , 742744.

  • Brutsaert, W. H., 1982: Evaporation into the Atmosphere. D. Reidel, 299 pp.

  • Burg, J. P., 1978: Maximum entropy spectral analysis. Modern Spectrum Analysis, D. G. Childers, Ed., IEEE Press, 42–48.

  • Chen, J., and P. Kumar, 2002: Role of terrestrial hydrologic memory in modulating ENSO impacts in North America. J. Climate, 15 , 35693585.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and P. Kumar, 2004: A modeling study of the ENSO influence on the terrestrial energy profile in North America. J. Climate, 17 , 16571670.

    • Search Google Scholar
    • Export Citation
  • Childers, D. G., 1978: Modern Spectrum Analysis. IEEE Press, 334 pp.

  • Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14 , 601604.

  • Delworth, T. L., and S. Manabe, 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1 , 523547.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and S. Manabe, 1993: Climate variability and land surface processes. Adv. Water Resour., 16 , 320.

  • de Vries, D. A., 1975: Heat transfer in soils. Transfer Processes in the Plant Environment, D. A. de Vries and N. H. Afgan, Eds., Vol. 2, Heat and Mass Transfer in the Biosphere, Wiley, 4–28.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13 , 29002922.

  • Dirmeyer, P. A., 2001: An evaluation of the strength of land–atmosphere coupling. J. Hydrometeor., 2 , 329344.

  • Elsner, J. B., and A. A. Tsonis, 1996: Singular Spectrum Analysis: A New Tool in Time Series Analysis. Plenum Press, 164 pp.

  • Eltahir, E. A. B., 1998: A soil moisture-rainfall feedback mechanism. 1. Theory and observations. Water Resour. Res., 34 , 765776.

  • Emery, W. J., and R. E. Thomson, 1997: Data Analysis Methods in Physical Oceanography. Pergamon Press, 634 pp.

  • Entekhabi, D., I. Rodriguez-Iturbe, and F. Castelli, 1996: Mutual interaction of soil moisture states and atmospheric processes. J. Hydrol., 184 , 317.

    • Search Google Scholar
    • Export Citation
  • Entin, J. K., A. Robock, K. Y. Vinnikov, S. E. Hollinger, S. Liu, and A. Namkhai, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105 , 1186511877.

    • Search Google Scholar
    • Export Citation
  • Farouki, O. T., 1986: Thermal Properties of Soils. Vol. 11, Series on Rock and Soil Mechanics, Trans Tech, 136 pp.

  • Feddes, R. A., and Coauthors, 2001: Modeling root water uptake in hydrological and climate models. Bull. Amer. Meteor. Soc., 82 , 27972809.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 1997: An analysis of the soil moisture–rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33 , 725735.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40 , 3.13.41.

  • Goodrich, L. E., 1982: The influence of snow cover on the ground thermal regime. Can. Geotech. J., 19 , 421432.

  • Hillel, D., 1980: Introduction to Soil Physics. Academic Press, 364 pp.

  • Hollinger, S. E., and S. A. Isard, 1994: A soil moisture climatology of Illinois. J. Climate, 7 , 822833.

  • Hollinger, S. E., B. C. Reinke, and R. A. Peppler, 1994: Illinois Climate Network: Site descriptions, instrumentation, and data management. Illinois State Water Survey, Circular 178, 70 pp.

  • Hu, Q., and S. Feng, 2004: A role of soil enthalpy in land memory. J. Climate, 17 , 36333643.

  • Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala, and E. D. Schulze, 1996: A global analysis of root distributions for terrestrial biomes. Oecologia, 108 , 389411.

    • Search Google Scholar
    • Export Citation
  • Jiang, N., J. D. Neelin, and M. Ghil, 1995: Quasi-quadrennial and quasi-biennial variability in the equatorial pacific. Climate Dyn., 12 , 101112.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., J. D. Neelin, and M. Ghil, 1994: El Niño on the “Devil’s Staircase”: Annual subharmonic steps to chaos. Science, 264 , 710713.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., J. D. Neelin, and M. Ghil, 1996: El Niño/southern oscillation and annual cycle: Subharmonic frequency-locking and a periodicity. Physica D, 98 , 442465.

    • Search Google Scholar
    • Export Citation
  • Jones, R. H., 1975: Estimating the variance of time averages. J. Appl. Meteor., 14 , 159163.

  • Jury, W. A., W. R. Gardner, and W. H. Gardner, 1991: Soil Physics. John Wiley and Sons, 328 pp.

  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2 , 558570.

  • Koster, R. D., and M. J. Suarez, 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor., 4 , 408423.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Kumar, P., 2004: Roles of recycling and memory in the variability of the hydrologic cycle. Proc. Int. Conf. on Hydrology: Science and Practice for the 21st Century, London, United Kingdom, British Hydrological Society.

  • Lai, C-T., and G. Katul, 2000: The dynamic role of root-water uptake in coupling potential to actual transpiration. Adv. Water Resour., 23 , 427439.

    • Search Google Scholar
    • Export Citation
  • Moron, V., R. Vautard, and M. Ghil, 1998: Trends, interdecadal, and interannual oscillations in global sea-surface temperatures. Climate Dyn., 14 , 545569.

    • Search Google Scholar
    • Export Citation
  • Murray, E. J., 2002: An equation of state for unsaturated soils. Can. Geotech. J., 39 , 125140.

  • Niemann, J. D., and E. A. B. Eltahir, 2004: Prediction of regional water balance components based on climate, soil, and vegetation parameters, with application to the Illinois River Basin. Water Resour. Res., 40 .W03103, doi:10.1029/2003WR002806.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Search Google Scholar
    • Export Citation
  • Percival, D. B., and A. T. Walden, 1993: Spectral Analysis for Physical Applications—Multitaper and Conventional Univariate Techniques. Cambridge University Press, 580 pp.

    • Search Google Scholar
    • Export Citation
  • Pielke Sr., R. A., 2003: Heat storage within the earth system. Bull. Amer. Meteor. Soc., 84 , 331335.

  • Rasmusson, E. M., X. Wang, and C. F. Ropelewski, 1990: The biennial component of ENSO variability. J. Mar. Syst., 1 , 7196.

  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and J. S. Famiglietti, 2001: An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res., 37 , 13271339.

    • Search Google Scholar
    • Export Citation
  • Saleem, J. A., and G. D. Salvucci, 2002: Comparison of soil wetness indices for inducing functional similarity of hydrologic response across sites in Illinois. J. Hydrometeor., 3 , 8091.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., P. Viterbo, D. Luthi, and C. Schar, 2004: Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River basin. J. Climate, 17 , 20392057.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1982: Spectrum estimation and harmonic analysis. Proc. IEEE, 70 , 10551096.

  • Ulrych, T. J., and T. N. Bishop, 1975: Maximum entropy spectral analysis and autoregressive decomposition. Rev. Geophys. Space Phys., 13 , 183200.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and M. Ghil, 1989: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D, 35 , 395424.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., P. Yiou, and M. Ghil, 1992: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58 , 95126.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., A. Robock, N. A. Speranskaya, and C. A. Schlosser, 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101 , 71637174.

    • Search Google Scholar
    • Export Citation
  • Wu, W., and R. E. Dickinson, 2004: Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J. Climate, 17 , 27522764.

    • Search Google Scholar
    • Export Citation
  • Wu, W., M. A. Geller, and R. E. Dickinson, 2002: The response of soil moisture to long-term variability of precipitation. J. Hydrometeor., 3 , 604613.

    • Search Google Scholar
    • Export Citation
  • Yeh, P. J., M. Irizarry, and E. A. B. Eltahir, 1998: Hydroclimatology of Illinois: A comparison of monthly evaporation estimates based on atmospheric water balance and soil water balance. J. Geophys. Res., 103 , 1982319837.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., 2001: Global vegetation root distribution for land modeling. J. Hydrometeor., 2 , 525530.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1373 869 43
PDF Downloads 371 63 4