Statistical Modeling of the Temperatures in the Northern Hemisphere Using Fractional Integration Techniques

Luis A. Gil-Alana Department of Economics, University of Navarra, Pamplona, Spain

Search for other papers by Luis A. Gil-Alana in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The temperatures in the Northern Hemisphere from 1854 to 1999 have been analyzed in this article by means of a testing procedure that permits one to consider fractional degrees of integration. The tests are valid under general forms of serial correlation and deterministic trends and do not require estimation of the fractional differencing parameter. The results show that the series follows a fractionally integrated process with the order of integration higher than zero and thus implying long memory behavior. The series was decomposed into four different subsamples, and it was observed that the degree of dependence between the observations substantially increased during the twentieth century.

Corresponding author address: Luis A. Gil-Alana, Facultad de Ciencias Economicas, Edificio Biblioteca, Entrada Este, Universidad de Navarra, E-31080 Pamplona, Spain. Email: alana@unav.es

Abstract

The temperatures in the Northern Hemisphere from 1854 to 1999 have been analyzed in this article by means of a testing procedure that permits one to consider fractional degrees of integration. The tests are valid under general forms of serial correlation and deterministic trends and do not require estimation of the fractional differencing parameter. The results show that the series follows a fractionally integrated process with the order of integration higher than zero and thus implying long memory behavior. The series was decomposed into four different subsamples, and it was observed that the degree of dependence between the observations substantially increased during the twentieth century.

Corresponding author address: Luis A. Gil-Alana, Facultad de Ciencias Economicas, Edificio Biblioteca, Entrada Este, Universidad de Navarra, E-31080 Pamplona, Spain. Email: alana@unav.es

Save
  • Adenstedt, R. K., 1974: On large-sample estimation for the mean of a stationary random sequence. Ann. Stat., 2 , 259–272.

  • Baillie, R. T., 1996: Long memory processes and fractional integration in econometrics. J. Econ., 73 , 5–59.

  • Baillie, R. T., and T. Bollerslev, 1994: Cointegration, fractional cointegration and exchange rate dynamics. J. Finance, 49 , 737–745.

    • Search Google Scholar
    • Export Citation
  • Beran, J., 1994: Statistics for Long Memory Processes. Vol. 61, Monographs on Statistics and Applied Probability, Chapman and Hall, 315 pp.

    • Search Google Scholar
    • Export Citation
  • Beran, J., and N. Terrin, 1996: Testing for a change of the long memory parameter. Biometrika, 83 , 627–638.

  • Beran, J., R. J. Bhansali, and D. Ocker, 1998: On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes. Biometrika, 85 , 921–934.

    • Search Google Scholar
    • Export Citation
  • Bloomfield, P., 1973: An exponential model for the spectrum of a scalar time series. Biometrika, 60 , 217–226.

  • Bloomfield, P., 1992: Trends in global temperatures. Climate Change, 21 , 275–287.

  • Bloomfield, P., and D. Nychka, 1992: Climate spectra and detecting climate change. Climate Change, 21 , 1–16.

  • Canjels, E., and M. W. Watson, 1997: Estimating deterministic trends in the presence of serially correlated errors. Rev. Econ. Stat., 79 , 184–200.

    • Search Google Scholar
    • Export Citation
  • Chambers, M., 1998: Long memory and aggregation in macroeconomic time series. Int. Econ. Rev., 39 , 1053–1072.

  • Cioczek-Georges, R., and B. B. Mandelbrot, 1995: A class of micropulses and anti-persistent fractional Brownian motion. Stochastic Process. Appl., 60 , 1–18.

    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289 , 270–277.

  • Diebold, F. X., and G. D. Rudebusch, 1989: Long memory and persistence in aggregate output. J. Monet. Econ., 24 , 189–209.

  • Diebold, F. X., and A. Inoue, 2001: Long memory and regime switching. J. Econ., 105 , 131–159.

  • Galbraith, J., and C. Green, 1992: Inference about trends in global temperature data. Climate Change, 22 , 209–221.

  • Gil-Alana, L. A., 2000: Mean reversion in the real exchange rates. Econ. Lett., 69 , 285–288.

  • Gil-Alana, L. A., 2001a: Testing stochastic cycles in macroeconomic time series. J. Time Ser. Anal., 22 , 411–430.

  • Gil-Alana, L. A., 2001b: A fractionally integrated exponential spectral model for the UK unemployment. J. Forecasting, 20 , 329–340.

    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., and P. M. Robinson, 1997: Testing of unit roots and other nonstationary hypotheses in macroeconomic time series. J. Econ., 80 , 241–268.

    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., and P. M. Robinson, 2001: Testing seasonal fractional integration in the UK and Japanese consumption and income. J. Appl. Econ., 16 , 95–114.

    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., 1980: Long memory relationships and the aggregation of dynamic models. J. Econ., 14 , 227–238.

  • Granger, C. W. J., 1981: Some properties of time series data and their use in econometric model specification. J. Econ., 16 , 121–130.

    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., and R. Joyeux, 1980: An introduction to long memory time series and fractionally differencing. J. Time Ser. Anal., 1 , 15–29.

    • Search Google Scholar
    • Export Citation
  • Grenander, U., and M. Rosenblatt, 1957: Statistical Analysis of Stationary Time Series. Chelsea Publishing Company, 300 pp.

  • Hannan, E. J., and B. G. Quinn, 1979: The determination of the order of an autoregression. J. Roy. Stat. Soc., 41B , 190–195.

  • Hansen, J., and S. Lebedeff, 1987: Global trends of measured surface air temperature. J. Geophys. Res., 92 , 13345–13372.

  • Hansen, J., and S. Lebedeff, 1988: Global surface air temperatures: Update through 1987. Geophys. Res. Lett., 15 , 323–326.

  • Harvey, D. I., and T. C. Mills, 2001: Modelling global temperatures using cointegration and smooth transitions. Stat. Modell., 1 , 143–159.

    • Search Google Scholar
    • Export Citation
  • Harvey, D. I., and T. C. Mills, 2002: Unit roots and double smooth transitions. J. Appl. Stat., 29 , 675–683.

  • Haslett, J., and A. E. Raftery, 1989: Space time modelling with long memory dependence: Assessing Ireland’s wind power resource. Appl. Stat., 38 , 1–50.

    • Search Google Scholar
    • Export Citation
  • Hilfer, R., 2000: Applications of Fractional Calculus in Physics. World Scientific, 463 pp.

  • Horvath, L., 2001: Change-point detection in long memory processes. J. Multivar. Anal., 78 , 218–234.

  • Hosking, J. R. M., 1981: Fractional differencing. Biometrika, 68 , 165–176.

  • Hosking, J. R. M., 1984: Modelling persistence in hydrological time series using fractional differencing. Water Resour. Res., 20 , 1898–1908.

    • Search Google Scholar
    • Export Citation
  • Hurst, H. E., 1951: Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civ. Eng., 116 , 770–779.

  • Hurst, H. E., 1957: A suggested statistical model of some time series which occur in nature. Nature, 180 , 494.

  • Jones, P. D., and K. R. Briffa, 1992: Global surface air temperature variations during the twentieth century: Part 1, spatial, temporal and seasonal details. Holocene, 2 , 165–179.

    • Search Google Scholar
    • Export Citation
  • McBride, A. C., and G. F. Roach, 1985: Fractional Calculus. Research Notes in Mathematics, Pitman Advanced Publishing Program, 214 pp.

  • Montanari, A., R. Rosso, and M. S. Taqqu, 1996: Some long-run properties of rainfall records in Italy. J. Geophys. Res., 101 , 431–438.

    • Search Google Scholar
    • Export Citation
  • Montanari, A., R. Rosso, and M. S. Taqqu, 1997: Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation and simulation. Water Resour. Res., 331 , 1035–1044.

    • Search Google Scholar
    • Export Citation
  • Montanari, A., M. S. Taqqu, and V. Teverowsky, 1999: Estimating long range dependence in the presence of periodicity: An empirical study. Math. Comput. Modell., 29 , 217–238.

    • Search Google Scholar
    • Export Citation
  • Park, R. E., and B. M. Mitchell, 1980: Estimating the autocorrelated error model with trended data. J. Econ., 13 , 185–201.

  • Parke, W. R., 1999: What is fractional integration? Rev. Econ. Stat., 81 , 632–638.

  • Percival, D., J. Overland, and H. Mofjeld, 2001: Interpretation of North Pacific variability as a short and long memory process. NRCSE Tech. Rep. Series, Tech. Rep. 065, 35 pp.

  • Prais, S. J., and C. B. Winsten, 1954: Trend Estimators and Serial Correlation. Cowles Commission Monogr., No. 23, Yale University Press, 37 pp.

  • Robinson, P. M., 1978: Statistical inference for a random coefficient autoregressive model. Scand. J. Stat., 5 , 163–168.

  • Robinson, P. M., 1994a: Efficient tests of nonstationary hypotheses. J. Amer. Stat. Assoc., 89 , 1420–1437.

  • Robinson, P. M., 1994b: Semiparametric analysis of long memory time series. Ann. Stat., 22 , 515–539.

  • Robinson, P. M., 1995a: Log-periodogram regression of time series with long range dependence. Ann. Stat., 23 , 1048–1072.

  • Robinson, P. M., 1995b: Gaussian semiparametric estimation of long range dependence. Ann. Stat., 23 , 1630–1661.

  • Schmidt, P., and P. C. B. Phillips, 1992: Testing for a unit root in the presence of deterministic trends. Oxford Bull. Econ. Stat., 54 , 257–287.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., 1993: Long range dependence and global warming. Statistics for the Environment, V. Barnett and F. Turkman, Eds., John Wiley, 141–161.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., and F. L. Chen, 1996: Regression in long memory time series. Athens Conference on Applied Probability and Time Series, Volume II: Time Series Analysis in Memory of E. J. Hannan, P. M. Robinson and M. Rosenblatt, Eds., Springer Lecture Notes in Statistics, Vol. 115, 378–391.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., T. M. L. Wigley, and B. D. Santer, 2003: A bivariate time series approach to anthropogenic trend detection in hemispheric time series. J. Climate, 16 , 1228–1240.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., V. Pavan, and R. Bojariu, 2000: Is the North Atlantic oscillation a random walk? Int. J. Climatol., 20 , 1–18.

  • Stock, J. H., and M. W. Watson, 2002: Macroeconomic forecasting using diffusion indexes. J. Bus. Econ. Stat., 20 , 147–162.

  • Stott, P., and J. Kettleborough, 2002: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature, 416 , 723–726.

    • Search Google Scholar
    • Export Citation
  • Taqqu, M. S., 1975: Weak convergence to fractional motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie Verw. Geb., 31 , 287–302.

    • Search Google Scholar
    • Export Citation
  • Taqqu, M. S., W. Willinger, and R. Sherman, 1997: Proof of a fundamental result in self-similar traffic modelling. Comput. Commun. Rev., 27 , 5–23.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., R. L. Smith, and B. D. Santer, 1998: Anthropogenic influence on the autocorrelation structure of hemispheric-mean temperatures. Science, 282 , 1676–1680.

    • Search Google Scholar
    • Export Citation
  • Woodward, W. A., and H. L. Gray, 1993: Global warming and the problem of testing for trend in time series data. J. Climate, 6 , 953–962.

    • Search Google Scholar
    • Export Citation
  • Woodward, W. A., and H. L. Gray, 1995: Selecting a model for detecting the presence of a trend. J. Climate, 8 , 1929–1937.

  • Zhen, X., and R. E. Basher, 1999: Structural time series models and trend detection in global and regional temperature series. J. Climate, 12 , 2347–2358.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 725 308 107
PDF Downloads 240 34 2