Climatology and Interannual Variability of North Atlantic Hurricane Tracks

Lian Xie Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Lian Xie in
Current site
Google Scholar
PubMed
Close
,
Tingzhuang Yan Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Tingzhuang Yan in
Current site
Google Scholar
PubMed
Close
,
Leonard J. Pietrafesa College of Physical and Mathematical Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Leonard J. Pietrafesa in
Current site
Google Scholar
PubMed
Close
,
John M. Morrison Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by John M. Morrison in
Current site
Google Scholar
PubMed
Close
, and
Thomas Karl National Climatic Data Center, Asheville, North Carolina

Search for other papers by Thomas Karl in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The spatial and temporal variability of North Atlantic hurricane tracks and its possible association with the annual hurricane landfall frequency along the U.S. East Coast are studied using principal component analysis (PCA) of hurricane track density function (HTDF). The results show that, in addition to the well-documented effects of the El Niño–Southern Oscillation (ENSO) and vertical wind shear (VWS), North Atlantic HTDF is strongly modulated by the dipole mode (DM) of Atlantic sea surface temperature (SST) as well as the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO). Specifically, it was found that Atlantic SST DM is the only index that is associated with all top three empirical orthogonal function (EOF) modes of the Atlantic HTDF. ENSO and tropical Atlantic VWS are significantly correlated with the first and the third EOF of the HTDF over the North Atlantic Ocean. The second EOF of North Atlantic HTDF, which represents the “zonal gradient” of North Atlantic hurricane track density, showed no significant correlation with ENSO or with tropical Atlantic VWS. Instead, it is associated with the Atlantic SST DM, and extratropical processes including NAO and AO. Since for a given hurricane season, the preferred hurricane track pattern, together with the overall basinwide hurricane activity, collectively determines the hurricane landfall frequency, the results provide a foundation for the construction of a statistical model that projects the annual number of hurricanes striking the eastern seaboard of the United States.

Corresponding author address: Dr. Lian Xie, NCSU/MEAS, Box 8208, Raleigh, NC 27695-8208. Email: lian_xie@ncsu.edu

Abstract

The spatial and temporal variability of North Atlantic hurricane tracks and its possible association with the annual hurricane landfall frequency along the U.S. East Coast are studied using principal component analysis (PCA) of hurricane track density function (HTDF). The results show that, in addition to the well-documented effects of the El Niño–Southern Oscillation (ENSO) and vertical wind shear (VWS), North Atlantic HTDF is strongly modulated by the dipole mode (DM) of Atlantic sea surface temperature (SST) as well as the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO). Specifically, it was found that Atlantic SST DM is the only index that is associated with all top three empirical orthogonal function (EOF) modes of the Atlantic HTDF. ENSO and tropical Atlantic VWS are significantly correlated with the first and the third EOF of the HTDF over the North Atlantic Ocean. The second EOF of North Atlantic HTDF, which represents the “zonal gradient” of North Atlantic hurricane track density, showed no significant correlation with ENSO or with tropical Atlantic VWS. Instead, it is associated with the Atlantic SST DM, and extratropical processes including NAO and AO. Since for a given hurricane season, the preferred hurricane track pattern, together with the overall basinwide hurricane activity, collectively determines the hurricane landfall frequency, the results provide a foundation for the construction of a statistical model that projects the annual number of hurricanes striking the eastern seaboard of the United States.

Corresponding author address: Dr. Lian Xie, NCSU/MEAS, Box 8208, Raleigh, NC 27695-8208. Email: lian_xie@ncsu.edu

Save
  • Anderson, J. R., and J. R. Gyakum, 1989: A diagnostic study of Pacific basin circulation regimes as determined from extratropical cyclone tracks. Mon. Wea. Rev., 117 , 26722686.

    • Search Google Scholar
    • Export Citation
  • Arakawa, H., C. A. Buenafe, and H. D. Hamilton, 1981: Comparison of tropical cyclone movement and environmental steering. Mon. Wea. Rev., 109 , 908909.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115 , 10831127.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., X. H. Cao, B. S. Giese, and A. M. Da Silva, 1996: Decadal and interannual SST variability in the tropical Atlantic Ocean. J. Phys. Oceanogr., 26 , 11651175.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37 , 99128.

  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385 , 516518.

    • Search Google Scholar
    • Export Citation
  • Cureton, E. E., and R. B. D’Agostino, 1983: Factor Analysis, an Applied Approach. Lawrence Elburn, 457 pp.

  • Elsner, J. B., 2003: Tracking hurricanes. Bull. Amer. Meteor. Soc., 84 , 353356.

  • Fitzpatrick, P. J., J. A. Knaff, C. W. Landsea, and S. V. Finley, 1995: A systematic bias in the aviation model’s forecast of the Atlantic tropical upper-tropospheric trough: Implications for tropical cyclone forecasting. Wea. Forecasting, 10 , 433446.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and west African rainfall with Atlantic major hurricane activity. J. Climate, 9 , 11691187.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, M. A. Mestas-Nunez, and W. M. Gray, 2001: The recent increase in Atlantic Hurricane activity: Causes and implications. Science, 293 , 474479.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984a: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 hPa quasi-biennial oscillation influences. Mon. Wea. Rev., 112 , 16491668.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984b: Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Wea. Rev., 112 , 16691683.

  • Gray, W. M., 1990: Strong association between West African rainfall and U.S. landfall of intense hurricanes. Science, 249 , 12511256.

  • Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry, 1993: Predicting Atlantic seasonal tropical cyclone activity by 1 August. Wea. Forecasting, 8 , 7386.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., 1981: A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Mon. Wea. Rev., 109 , 20802092.

    • Search Google Scholar
    • Export Citation
  • Jagger, H. T., X. Niu, and J. B. Elsner, 2002: A space–time model for seasonal hurricane prediction. Int. J. Climatol., 22 , 451465.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kelly, K. A., 1988: Comment on “Empirical orthogonal function analysis of advanced very high resolution radiometer surface temperature patterns in Santa Barbara Channel” by G. S. E. Lagerloef and R. L. Bernstein. J. Geophys. Res., 93C , 1575315754.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2004: Updated 6–11-month prediction of Atlantic basin seasonal hurricane activity. Wea. Forecasting, 19 , 917934.

    • Search Google Scholar
    • Export Citation
  • Knappenberger, P. C., and P. J. Michaels, 1993: Cyclone tracks and wintertime climate in the mid-Atlantic region of the USA. Int. J. Climatol., 13 , 509531.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2000: El Niño–Southern Oscillation and the seasonal predictability of tropical cyclones. El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 149–181.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., N. Nicholls, W. M. Gray, and L. A. Avila, 1996: Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophys. Res. Lett., 23 , 16971700.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and P. Cornillon, 1995: Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream. J. Geophys. Res., 100 , 1360313613.

    • Search Google Scholar
    • Export Citation
  • Lehmiller, G. S., T. B. Kimberlain, and J. B. Elsner, 1997: Seasonal prediction models for North Atlantic basin hurricane location. Mon. Wea. Rev., 125 , 17801791.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Scientific Rep. 1, Statistical Forecasting Project, MIT, Cambridge, MA, 48 pp.

  • Marks, F. D., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities: Report of the Fifth Prospectus Development Team to the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 79 , 305323.

    • Search Google Scholar
    • Export Citation
  • Meyers, S. D., J. J. O’Brien, and E. Thelin, 1999: Reconstruction of monthly SST in the tropical Pacific Ocean during 1868–1993 using adaptive climate basis functions. Mon. Wea. Rev., 127 , 15991612.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., P. A. Arkin, W-Y. Chen, and J. B. Jalickee, 1981: Biennial variations in surface temperature over the United States as revealed by singular decomposition. Mon. Wea. Rev., 109 , 587598.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., and P. J. Lamb, 1985: Climate pattern analysis of three- and seven-day summer rainfall in the central United States: Some methodological considerations and a regionalization. J. Climate Appl. Meteor., 24 , 13251343.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104 , 12661278.

    • Search Google Scholar
    • Export Citation
  • Servain, J., 1991: Simple climate indices for the tropical Atlantic Ocean and some applications. J. Geophys. Res., 96 , 1513715146.

  • Sutton, R. T., S. P. Jewson, and D. P. Rowell, 2000: The elements of climate variability in the tropical Atlantic region. J. Climate, 13 , 32613284.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic Oscillation/Annular Mode: Two paradigms—One phenomenon. Quart. J. Roy. Meteor. Soc., 126 , 791805.

    • Search Google Scholar
    • Export Citation
  • Xie, L., T. Yan, and L. J. Pietrafesa, 2005: The effect of Atlantic sea surface temperature dipole mode on hurricanes: Implications for the 2004 Atlantic hurricane season. Geophys. Res. Lett., 32 .L03701, doi:10.1029/2004GL021702.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1798 747 128
PDF Downloads 1158 282 6