Black Sea Mixed Layer Sensitivity to Various Wind and Thermal Forcing Products on Climatological Time Scales

A. Birol Kara Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by A. Birol Kara in
Current site
Google Scholar
PubMed
Close
,
Harley E. Hurlburt Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Harley E. Hurlburt in
Current site
Google Scholar
PubMed
Close
,
Alan J. Wallcraft Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Alan J. Wallcraft in
Current site
Google Scholar
PubMed
Close
, and
Mark A. Bourassa Center for Ocean–Atmospheric Prediction Studies, Tallahassee, Florida

Search for other papers by Mark A. Bourassa in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study describes atmospheric forcing parameters constructed from different global climatologies, applied to the Black Sea, and investigates the sensitivity of Hybrid Coordinate Ocean Model (HYCOM) simulations to these products. Significant discussion is devoted to construction of these parameters before using them in the eddy-resolving (≈3.2-km resolution) HYCOM simulations. The main goal is to answer how the model dynamics can be substantially affected by different atmospheric forcing products in the Black Sea. Eight wind forcing products are used: four obtained from observation-based climatologies, including one based on measurements from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite, and the rest formed from operational model products. Thermal forcing parameters, including solar radiation, are formed from two operational models: the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS). Climatologically forced Black Sea HYCOM simulations (without ocean data assimilation) are then performed to assess the accuracy and sensitivity of the model sea surface temperature (SST) and sea surface circulation to these wind and thermal forcing products. Results demonstrate that the model-simulated SST structure is quite sensitive to the wind and thermal forcing products, especially near coastal regions. Despite this sensitivity, several robust features are found in the model SST in comparison to a monthly 9.3-km-resolution satellite-based Pathfinder SST climatology. Annual mean HYCOM SST usually agreed to within ≈±0.2° of the climatology in the interior of the Black Sea for any of the wind and thermal forcing products used. The fine-resolution (0.25° × 0.25°) wind forcing from the scatterometer data along with thermal forcing from NOGAPS gave the best SST simulation with a basin-averaged rms difference value of 1.21°C, especially improving model results near coastal regions. Specifically, atmospherically forced model simulations with no assimilation of any ocean data suggest that the basin-averaged rms SST differences with respect to the Pathfinder SST climatology can vary from 1.21° to 2.15°C depending on the wind and thermal forcing product. The latter rms SST difference value is obtained when using wind forcing from the National Centers for Environmental Prediction (NCEP), a product that has a too-coarse grid resolution of 1.875° × 1.875° for a small ocean basin such as the Black Sea. This paper also highlights the importance of using high-frequency (hybrid) wind forcing as opposed to monthly mean wind forcing in the model simulations. Finally, there are large variations in the annual mean surface circulation simulated using the different wind sets, with general agreement between those forced by the model-based products (vector correlation is usually >0.7). Three of the observation-based climatologies generally yield unrealistic circulation features and currents that are too weak.

* Naval Research Laboratory Contribution Number NRL/JA/7304/04/0002

Corresponding author address: Birol Kara, Naval Research Laboratory, Code 7320, Bldg. 1009, Stennis Space Center, MS 39529-5004. Email: kara@nrlssc.navy.mil

Abstract

This study describes atmospheric forcing parameters constructed from different global climatologies, applied to the Black Sea, and investigates the sensitivity of Hybrid Coordinate Ocean Model (HYCOM) simulations to these products. Significant discussion is devoted to construction of these parameters before using them in the eddy-resolving (≈3.2-km resolution) HYCOM simulations. The main goal is to answer how the model dynamics can be substantially affected by different atmospheric forcing products in the Black Sea. Eight wind forcing products are used: four obtained from observation-based climatologies, including one based on measurements from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite, and the rest formed from operational model products. Thermal forcing parameters, including solar radiation, are formed from two operational models: the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS). Climatologically forced Black Sea HYCOM simulations (without ocean data assimilation) are then performed to assess the accuracy and sensitivity of the model sea surface temperature (SST) and sea surface circulation to these wind and thermal forcing products. Results demonstrate that the model-simulated SST structure is quite sensitive to the wind and thermal forcing products, especially near coastal regions. Despite this sensitivity, several robust features are found in the model SST in comparison to a monthly 9.3-km-resolution satellite-based Pathfinder SST climatology. Annual mean HYCOM SST usually agreed to within ≈±0.2° of the climatology in the interior of the Black Sea for any of the wind and thermal forcing products used. The fine-resolution (0.25° × 0.25°) wind forcing from the scatterometer data along with thermal forcing from NOGAPS gave the best SST simulation with a basin-averaged rms difference value of 1.21°C, especially improving model results near coastal regions. Specifically, atmospherically forced model simulations with no assimilation of any ocean data suggest that the basin-averaged rms SST differences with respect to the Pathfinder SST climatology can vary from 1.21° to 2.15°C depending on the wind and thermal forcing product. The latter rms SST difference value is obtained when using wind forcing from the National Centers for Environmental Prediction (NCEP), a product that has a too-coarse grid resolution of 1.875° × 1.875° for a small ocean basin such as the Black Sea. This paper also highlights the importance of using high-frequency (hybrid) wind forcing as opposed to monthly mean wind forcing in the model simulations. Finally, there are large variations in the annual mean surface circulation simulated using the different wind sets, with general agreement between those forced by the model-based products (vector correlation is usually >0.7). Three of the observation-based climatologies generally yield unrealistic circulation features and currents that are too weak.

* Naval Research Laboratory Contribution Number NRL/JA/7304/04/0002

Corresponding author address: Birol Kara, Naval Research Laboratory, Code 7320, Bldg. 1009, Stennis Space Center, MS 39529-5004. Email: kara@nrlssc.navy.mil

Save
  • Afanasyev, Y. D., A. G. Kostianoy, A. G. Zatsepin, and P-M. Poulain, 2002: Analysis of velocity field in the eastern Black Sea from satellite data during the Black Sea ‘99 experiment. J. Geophys. Res., 107 .3098, doi:10.1029/2000JC000578.

    • Search Google Scholar
    • Export Citation
  • Altman, E. N., and N. I. Kumish, 1986: Interannual and seasonal variability of the Black Sea fresh water balance (in Russian). Tr. Gos. Okeanogr. Inst., 145 , 315.

    • Search Google Scholar
    • Export Citation
  • Altman, E. N., I. F. Gertman, and Z. A. Golubeva, 1987: Climatological fields of salinity and temperature in the Black Sea (in Russian). State Oceanography Institute Tech. Rep., 109 pp. [Available from the State Oceanography Institute, Sevastopol Branch, Sevastopol, Ukraine.].

  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4 , 5588.

  • Bourassa, M. A., D. M. Legler, J. J. O’Brien, and S. R. Smith, 2003: SeaWinds validation with research vessels. J. Geophys. Res., 108 .3019, doi:10.1029/2001JC001028.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., R. Rosario, S. R. Smith, and J. J. O’Brien, 2005: A new FSU winds climatology. J. Climate, 18 , 36923704.

  • Bourras, D., L. Eymard, and W. T. Liu, 2002: A neural network to estimate the latent heat flux over oceans from satellite observations. Int. J. Remote Sens., 23 , 24052423.

    • Search Google Scholar
    • Export Citation
  • Casey, K. S., and P. Cornillon, 1999: A comparison of satellite and in situ–based sea surface temperature climatologies. J. Climate, 12 , 18481863.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., L. T. Smith, G. R. Halliwell Jr., and R. Bleck, 2003: North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33 , 25042526.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., J. C. Ries, B. J. Haines, L. L. Fu, and P. Callahan, 2001: Satellite altimetry. Satellite Altimetry and Earth Sciences, L. L. Fu and A. Cazanave, Eds., Academic Press, 57–64.

    • Search Google Scholar
    • Export Citation
  • Crosby, D. S., L. C. Breaker, and W. H. Gemmill, 1993: A proposed definition for vector correlation in geophysics: Theory and application. J. Atmos. Oceanic Technol., 10 , 355367.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Efimov, E. V., and A. Timofeev, 1990: Investigation of the Black Sea and Azov Sea heat balance. Ukrainian Academy of Science, Sevastopol, Ukraine, 237 pp.

  • Ezer, T., 1999: Decadal variabilities of the upper layers of the subtropical North Atlantic: An ocean model study. J. Phys. Oceanogr., 29 , 31113124.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Fox, D. N., W. J. Teague, C. N. Barron, M. R. Carnes, and C. M. Lee, 2002: The Modular Ocean Data Assimilation System (MODAS). J. Atmos. Oceanic Technol., 19 , 240252.

    • Search Google Scholar
    • Export Citation
  • Fu, L. L., and Y. Chao, 1997: The sensitivity of a global ocean model to wind forcing: A test using sea level and wind observations from satellites and operational wind analysis. Geophys. Res. Lett., 24 , 17831786.

    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G., G. Korotaev, S. Stanichny, L. Repetin, and D. Soloviev, 1999: Synoptic upwelling and cross-shelf transport processes along the Crimean coast of the Black Sea. Cont. Shelf Res., 19 , 9771005.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1999: ECMWF Re-Analysis Project Report Series: 1. ERA description (Version 2), 74 pp. [Available from ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom.].

  • Ginzburg, A. I., A. G. Kostianoy, N. P. Nezlin, D. M. Soloviev, and S. V. Stanichny, 2002: Anticyclonic eddies in the northwestern Black Sea. J. Mar. Syst., 32 , 91106.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and B. C. Weare, 1997: Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Climate, 10 , 27642781.

    • Search Google Scholar
    • Export Citation
  • Golubev, Y. N., and A. Y. Kuftarkov, 1993: On the flux of momentum at the Black Sea surface (in Russian). Meteor. Gidrol., 3 , 9297.

  • Golubeva, A., 1984: Variability of the Black Sea heat balance (in Russian). Tr. Gos. Okeanogr. Inst., 180 , 2132.

  • Halliwell Jr., G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid Coordinate Ocean Model (HYCOM). Ocean Modell., 7 , 285322.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., 1989: On climatological monthly mean wind stress and wind stress curl fields over the World Ocean. J. Climate, 2 , 5770.

    • Search Google Scholar
    • Export Citation
  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr., 13 , 10931104.

    • Search Google Scholar
    • Export Citation
  • Hogan, P. J., and H. E. Hurlburt, 2005: Sensitivity of simulated circulation dynamics to the choice of surface wind forcing in the Japan/East Sea. Deep-Sea Res., 52 , 14641489.

    • Search Google Scholar
    • Export Citation
  • Jo, Y-H., X-H. Yan, J. Pan, and W. T. Liu, 2004: Sensible and latent heat flux in the tropical Pacific from satellite multi-sensor data. Remote Sens. Environ., 90 , 166177.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12 , 28562880.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 2002: Wind stress forcing of the ocean in the SOC climatology: Comparisons with the NCEP–NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets. J. Phys. Oceanogr., 32 , 19932019.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kara, A. B., H. E. Hurlburt, and P. A. Rochford, 2000: Efficient and accurate bulk parameterizations of air–sea fluxes for use in general circulation models. J. Atmos. Oceanic Technol., 17 , 14211438.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, and P. A. Rochford, 2002: Air–sea flux estimates and the 1997–1998 ENSO event. Bound.-Layer Meteor., 103 , 439458.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2003: Climatological SST and MLD simulations from NLOM with an embedded mixed layer. J. Atmos. Oceanic Technol., 20 , 16161632.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, P. A. Rochford, and J. J. O’Brien, 2004: The impact of water turbidity on the interannual sea surface temperature simulations in a layered global ocean model. J. Phys. Oceanogr., 34 , 345359.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2005a: A new solar radiation penetration scheme for use in ocean mixed layer studies: An application to the Black Sea using a fine-resolution Hybrid Coordinate Ocean Model (HYCOM). J. Phys. Oceanogr., 35 , 1332.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2005b: Sea surface temperature sensitivity to water turbidity from simulations of the turbid Black Sea using HYCOM. J. Phys. Oceanogr., 35 , 3354.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2005c: How does solar attenuation depth affect the ocean mixed layer? Water turbidity and atmospheric forcing impacts on the simulation of seasonal mixed layer variability in the turbid Black Sea. J. Climate, 18 , 389409.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., S. Dickinson, and Z-J. Yu, 1999: NSCAT tropical wind stress maps: Implications for improving ocean modeling. J. Geophys. Res., 104 , 291310.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and P. K. Taylor, 1995: A comparison of heat flux estimates for the North Atlantic Ocean. J. Phys. Oceanogr., 25 , 15301549.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., P. K. Taylor, B. S. Truscott, and J. A. Hopkins, 1993: The accuracy of voluntary observing ships’ meteorological observations—Results of the VSOP-NA. J. Atmos. Oceanic Technol., 10 , 591608.

    • Search Google Scholar
    • Export Citation
  • Korotaev, G. K., T. Oguz, A. Nikiforov, and C. J. Koblinsky, 2003: Seasonal, interannual and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. J. Geophys. Res., 108 .3122, doi:10.1029/2002JC001508.

    • Search Google Scholar
    • Export Citation
  • Lee, S-K., D. B. Enfield, and C. Wang, 2005: Ocean general circulation model sensitivity experiments on the annual cycle of the Western Hemisphere Warm Pool. J. Geophys. Res., 110 .C09004, doi:10.1029/2004JC002640.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 2002: Progress in scatterometer application. J. Oceanogr., 58 , 121136.

  • Liu, W. T., W. Tang, and P. S. Polito, 1998: NASA Scatterometer provides global ocean-surface wind fields with more structures than numerical weather prediction. Geophys. Res. Lett., 25 , 761764.

    • Search Google Scholar
    • Export Citation
  • Makerov, Y. V., 1961: Heat balance of the Black Sea (in Russian). Tr. Gos. Okeanogr. Inst., 61 , 169183.

  • Metzger, E. J., 2003: Upper ocean sensitivity to wind forcing in the South China Sea. J. Oceanogr., 59 , 783798.

  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116 , 24172424.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1992: Climatology, persistence, and their linear combination as standards of reference in skill scores. Wea. Forecasting, 7 , 692698.

    • Search Google Scholar
    • Export Citation
  • Oguz, T., and P. Malanotte-Rizzoli, 1996: Seasonal variability of wind and thermohaline driven circulation in the Black Sea: Modeling studies. J. Geophys. Res., 101 , 1655116569.

    • Search Google Scholar
    • Export Citation
  • Oguz, T., P. Malanotte-Rizzoli, and D. Aubrey, 1995: Wind and thermohaline circulation of the Black Sea driven by yearly mean climatological forcing. J. Geophys. Res., 100 , 68456863.

    • Search Google Scholar
    • Export Citation
  • Pegion, P. J., M. A. Bourassa, D. M. Legler, and J. J. O’Brien, 2000: Objectively derived daily “winds” from satellite scatterometer data. Mon. Wea. Rev., 128 , 31503168.

    • Search Google Scholar
    • Export Citation
  • Perry, G. D., P. B. Duffy, and N. L. Miller, 1996: An extended data set of river discharges for validation of general circulation models. J. Geophys. Res., 101 , 2133921349.

    • Search Google Scholar
    • Export Citation
  • Rachev, N. H., V. M. Roussenov, and E. V. Stanev, 1991: The Black Sea climatological wind stress (in Bulgarian). Bulg. J. Meteor. Hydrol., 2 , 7279.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., R. Atlas, S. D. Schubert, and C. S. Willett, 1996: A comparison of surface wind products over the North Pacific Ocean. J. Geophys. Res., 101 , 10111023.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T. E., J. Teixeira, M. Peng, T. F. Hogan, and R. Pauley, 2002: Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models. Oceanography, 15 , 99108.

    • Search Google Scholar
    • Export Citation
  • Samuel, S. L., K. Haines, S. A. Josey, and P. G. Myers, 1999: Response of the Mediterranean Sea thermohaline circulation to observed changes in the winter wind stress field in the period 1980–93. J. Geophys. Res., 104 , 77717784.

    • Search Google Scholar
    • Export Citation
  • Schlax, M. G., D. B. Chelton, and M. H. Freilich, 2001: Sampling errors in wind fields constructed from single and tandem scatterometer datasets. J. Atmos. Oceanic Technol., 18 , 10141036.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and A. Loughe, 1995: A reduced-gravity isopycnal ocean model: Hindcasts of El Niño. Mon. Wea. Rev., 123 , 28392863.

  • Schrum, C., J. Staneva, E. Stanev, and E. Ozsoy, 2001: Air–sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979–1993. J. Mar. Syst., 31 , 319.

    • Search Google Scholar
    • Export Citation
  • Simonov, A. I., and E. N. Altman, 1991: Black Sea. Vol. 4, Hydrometerology and Hydrochemistry of the USSR Seas, Gidrometeoizdat, 430 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., D. M. Legler, and K. V. Verzone, 2001: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J. Climate, 14 , 40624072.

    • Search Google Scholar
    • Export Citation
  • Sorkina, A. I., 1974: Reference Book on the Black Sea Climate. (in Russian). Gidrometeoizdat, 406 pp.

  • Stanev, E. V., 1990: On the mechanisms of the Black Sea circulation. Earth-Sci. Rev., 28 , 285319.

  • Stanev, E. V., and J-M. Beckers, 1999: Numerical simulations of seasonal and interannual variability of the Black Sea thermohaline circulation. J. Mar. Syst., 22 , 241267.

    • Search Google Scholar
    • Export Citation
  • Stanev, E. V., J. V. Staneva, and V. M. Roussenov, 1997: On the Black Sea water mass formation. Model sensitivity study to atmospheric forcing and parameterization of some physical processes. J. Mar. Syst., 13 , 245272.

    • Search Google Scholar
    • Export Citation
  • Stanev, E. V., M. J. Bowman, E. L. Peneva, and J. V. Staneva, 2003: Control of Black Sea intermediate water mass formation by dynamics and topography: Comparison of numerical simulations, survey and satellite data. J. Mar. Res., 61 , 5999.

    • Search Google Scholar
    • Export Citation
  • Stanev, E. V., J. Staneva, J. L. Bullister, and J. W. Murray, 2004: Ventilation of the Black Sea pycnocline. Parameterization of convection, numerical simulations and validations against observed chlorofluorocarbon data. Deep-Sea Res., 51 , 21372169.

    • Search Google Scholar
    • Export Citation
  • Staneva, J. V., and E. V. Stanev, 1998: Oceanic response to atmospheric forcing derived from different climatic data sets. Ocean. Acta, 21 , 393417.

    • Search Google Scholar
    • Export Citation
  • Staneva, J. V., D. E. Dietrich, E. V. Stanev, and M. J. Bowman, 2001: Rim Current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation. J. Mar. Syst., 31 , 137157.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., X. Li, M. M. Rienecker, K-M. Lau, and R. T. Pinker, 2003: The role of daily surface forcing in the upper ocean over the tropical Pacific: A numerical study. J. Climate, 16 , 756766.

    • Search Google Scholar
    • Export Citation
  • Townsend, T. L., H. E. Hurlburt, and P. J. Hogan, 2000: Modeled Sverdrup flow in the North Atlantic from 11 different wind stress climatologies. Dyn. Atmos. Oceans, 32 , 373417.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14 , 213231.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, J. W. Hurrell, and M. Fiorino, 2001: Quality of reanalyses in the Tropics. J. Climate, 14 , 14991510.

    • Search Google Scholar
    • Export Citation
  • Trukhchev, D. I., and Y. L. Demin, 1992: The Black Sea general circulation and climatic temperature and salinity fields. Woods Hole Oceanographic Institution Tech. Rep. WHOI-92-34, 136 pp. [Available from MBL/WHOI Library, 7 MBL Street, Woods Hole, MA 02543.].

  • Unluata, U., T. Oguz, M. A. Latif, and E. Ozsoy, 1990: On the physical oceanography of the Turkish Straits. The Physical Oceanography of Sea Straits, G. Pratt, Ed., NATO ASI Series C, Kluwer, 25–60.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., K. Sharma, B. M. Fekete, A. H. Copeland, J. Holden, J. Marble, and J. A. Lough, 1997: The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 26 , 210219.

    • Search Google Scholar
    • Export Citation
  • Wallcraft, A. J., A. B. Kara, H. E. Hurlburt, and P. A. Rochford, 2003: The NRL Layered Global Ocean Model (NLOM) with an embedded mixed layer submodel: Formulation and tuning. J. Atmos. Oceanic Technol., 20 , 16011615.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 1989: Uncertainties in estimates of surface heat fluxes derived from marine reports over the tropical and subtropical oceans. Tellus, 41A , 357370.

    • Search Google Scholar
    • Export Citation
  • Zatsepin, A. G., A. I. Ginzburg, A. G. Kostianoy, V. V. Kremenitskiy, V. G. Krivosheya, S. V. Stanichny, and P-M. Poulain, 2003: Observations of Black Sea mesoscale eddies and associated horizontal mixing. J. Geophys. Res., 108 .3246, doi:10.1029/2002JC001390.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 439 220 57
PDF Downloads 233 62 6