Why Are There Tropical Warm Pools?

Amy C. Clement Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Amy C. Clement in
Current site
Google Scholar
PubMed
Close
,
Richard Seager Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
, and
Raghu Murtugudde Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Raghu Murtugudde in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Tropical warm pools appear as the primary mode in the distribution of tropical sea surface temperature (SST). Most previous studies have focused on the role of atmospheric processes in homogenizing temperatures in the warm pool and establishing the observed statistical SST distribution. In this paper, a hierarchy of models is used to illustrate both oceanic and atmospheric mechanisms that contribute to the establishment of tropical warm pools. It is found that individual atmospheric processes have competing effects on the SST distribution: atmospheric heat transport tends to homogenize SST, while the spatial structure of atmospheric humidity and surface wind speeds tends to remove homogeneity. The latter effects dominate, and under atmosphere-only processes there is no warm pool. Ocean dynamics counter this effect by homogenizing SST, and it is argued that ocean dynamics is fundamental to the existence of the warm pool. Under easterly wind stress, the thermocline is deep in the west and shallow in the east. Because of this, poleward Ekman transport of water at the surface, compensated by equatorward geostrophic flow below and linked by equatorial upwelling, creates a cold tongue in the east but homogenizes SST in the west, creating a warm pool. High clouds may also homogenize the SST by reducing the surface solar radiation over the warmest water, but the strength of this feedback is quite uncertain. Implications for the role of these processes in climate change are discussed.

Corresponding author address: Amy Clement, Rosenstiel School of Marine and Atmospheric Sciences/MPO, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: aclement@rsmas.miami.edu

Abstract

Tropical warm pools appear as the primary mode in the distribution of tropical sea surface temperature (SST). Most previous studies have focused on the role of atmospheric processes in homogenizing temperatures in the warm pool and establishing the observed statistical SST distribution. In this paper, a hierarchy of models is used to illustrate both oceanic and atmospheric mechanisms that contribute to the establishment of tropical warm pools. It is found that individual atmospheric processes have competing effects on the SST distribution: atmospheric heat transport tends to homogenize SST, while the spatial structure of atmospheric humidity and surface wind speeds tends to remove homogeneity. The latter effects dominate, and under atmosphere-only processes there is no warm pool. Ocean dynamics counter this effect by homogenizing SST, and it is argued that ocean dynamics is fundamental to the existence of the warm pool. Under easterly wind stress, the thermocline is deep in the west and shallow in the east. Because of this, poleward Ekman transport of water at the surface, compensated by equatorward geostrophic flow below and linked by equatorial upwelling, creates a cold tongue in the east but homogenizes SST in the west, creating a warm pool. High clouds may also homogenize the SST by reducing the surface solar radiation over the warmest water, but the strength of this feedback is quite uncertain. Implications for the role of these processes in climate change are discussed.

Corresponding author address: Amy Clement, Rosenstiel School of Marine and Atmospheric Sciences/MPO, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: aclement@rsmas.miami.edu

Save
  • Betts, A. K., and W. Ridgway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46 , 2621–2641.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18 , 820–829.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. C. Pacanowski, S. G. H. Philander, and A. V. Federov, 2004: The thermal structure of the upper ocean. J. Phys. Oceanogr., 34 , 888–902.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and E. S. Sarachik, 1976: Forced baroclinic ocean motions I: The linear equatorial unbounded case. J. Mar. Res., 34 , 629–664.

    • Search Google Scholar
    • Export Citation
  • Chambers, L., B. Lin, B. Wielicki, Y. X. Hu, and K. M. Xu, 2002: Reply. J. Climate, 15 , 2716–2717.

  • Clement, A. C., and R. Seager, 1999: Climate and the tropical oceans. J. Climate, 12 , 3384–3401.

  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9 , 2190–2196.

  • da Silva, A., A. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and W. Kovari, 2002: Climatic properties of tropical precipitating convection under varying environmental conditions. J. Climate, 15 , 2597–2615.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and J. D. Neelin, 1995: Ocean–atmosphere interaction and the tropical climatology. Part II: Why the Pacific cold tongue is in the east. J. Climate, 8 , 1343–1359.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., M. Baker, and D. L. Hartmann, 2002: Tropical cirrus and water vapor: An effective Earth infrared iris feedback? Atmos. Chem. Phys., 2 , 31–37.

    • Search Google Scholar
    • Export Citation
  • Fu, R., A. D. DelGenio, W. B. Rossow, and W. T. Liu, 1992: Cirrus cloud thermostat for tropical sea surface temperatures tested using satellite data. Nature, 358 , 394–397.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 1993: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate, 6 , 2049–2062.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 2002: No evidence for iris. Bull. Amer. Meteor. Soc., 83 , 249–254.

  • Hartmann, D. L., M. E. Ockert-Bell, and M. Michelsen, 1992: The effect of cloud type on earth’s energy balance: Global analysis. J. Climate, 5 , 1281–1304.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14 , 4495–4511.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., M. Visbeck, M. A. Cane, A. Karspeck, and N. Naik, 2001: Decadal upper ocean temperature variability in the tropical Pacific. J. Geophys. Res., 106 , C5,. 8971–8988.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., R. Seager, M. Cane, and N. Naik, 2004: How can tropical Pacific ocean heat transport vary? J. Phys. Oceanogr., 34 , 320–333.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58 , 943–948.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, and M. Winton, 2005: Why ocean heat transport warms the global mean climate. Tellus, 57A , 662–675.

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. P. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 1131–1149.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 1587–1606.

  • Larson, K., and D. L. Hartmann, 2003: Interactions among cloud, water vapor, radiation, and large-scale circulation in the tropical climate. Part II: Sensitivity to spatial gradients of sea surface temperature. J. Climate, 16 , 1441–1455.

    • Search Google Scholar
    • Export Citation
  • Larson, K., D. L. Hartmann, and S. A. Klein, 1999: On the role of clouds, water vapor, circulation, and boundary layer structure on the sensitivity of the tropical climate. J. Climate, 12 , 2359–2374.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., C-H. Sui, M. D. Chou, and W-K. Tao, 1994: An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature. Geophys. Res. Lett., 21 , 1157–1160.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Lin, B., B. A. Wielicki, L. H. Chambers, Y. X. Hu, and K. M. Xu, 2002: The iris hypothesis: A negative or positive cloud feedback? J. Climate, 15 , 3–7.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., M. D. Chou, and A. Y. Hou, 2001: Does the earth have an adaptive infrared iris? Bull. Amer. Meteor. Soc., 82 , 417–432.

    • Search Google Scholar
    • Export Citation
  • Ma, C-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9 , 1635–1645.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10 , 409–440.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Philander, S. G., and A. V. Fedorov, 2003: The role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography, 12 .1045, doi:10.1029/2002PA000837.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the runaway greenhouse. J. Atmos. Sci., 52 , 1784–1806.

  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351 , 27–32.

    • Search Google Scholar
    • Export Citation
  • Salathe, E. P., and D. L. Hartmann, 1997: A trajectory analysis of tropical upper-tropospheric moisture and convection. J. Climate, 10 , 2533–2547.

    • Search Google Scholar
    • Export Citation
  • Salathe, E. P., and D. L. Hartmann, 2000: Subsidence and upper-tropospheric drying along trajectories in a general circulation model. J. Climate, 13 , 257–263.

    • Search Google Scholar
    • Export Citation
  • Seager, R., S. E. Zebiak, and M. A. Cane, 1988: A model of the tropical Pacific sea surface temperature climatology. J. Geophys. Res., 93 , 1265–1280.

    • Search Google Scholar
    • Export Citation
  • Seager, R., A. C. Clement, and M. A. Cane, 2000: Glacial cooling in the Tropics: Exploring the roles of tropospheric water vapor, surface wind speed, and boundary layer processes. J. Atmos. Sci., 57 , 2144–2157.

    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Murtugudde, A. C. Clement, and C. Herweijer, 2003a: Why is there an evaporation minimum at the equator? J. Climate, 16 , 3792–3801.

    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Murtugudde, N. Naik, A. Clement, N. Gordon, and J. A. Miller-Velez, 2003b: Air–sea interaction and the seasonal cycle of the subtropical anticyclones. J. Climate, 16 , 1948–1966.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2003: On the coexistence of an evaporation minimum and precipitation maximum in the warm pool. J. Climate, 16 , 1003–1009.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., I. M. Held, and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15 , 2702–2706.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 1997: Variations in the tropical greenhouse effect during El Niño. J. Climate, 10 , 1050–1055.

  • Sun, D-Z., and Z. Liu, 1996: Dynamic ocean–atmosphere coupling: A thermostat for the tropics. Science, 272 , 1148–1150.

  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 3433–3443.

    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1973: Model of world ocean circulation: 1. Wind-driven, two layer. J. Mar. Res., 31 , 228–288.

  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool sea-surface temperatures—Coupled interactions and self-regulation. J. Geophys. Res., 98D , 12881–12893.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1992: Effect of deep convection on the regulation of tropical sea surface temperature. Nature, 357 , 230–231.

  • Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16 , 2875–2889.

  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5 , 572–584.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 2262–2278.

  • Zhang, G. J., V. Ramanathan, and M. J. McPhaden, 1995: Convection–evaporation feedback in the equatorial Pacific. J. Climate, 8 , 3040–3051.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1236 388 75
PDF Downloads 837 203 12