• Angell, J. K., 1991: Stratosphere temperature change as a function of height and sunspot number during 1972–89 based on rocketsonde and radiosonde data. J. Climate, 4 , 11701180.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104 , 3093730946.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The Quasi-Biennial Oscillation. Rev. Geophys, 39 , 179229.

  • Battisti, D. S., and E. S. Sarachik, 1995: Understanding and predicting ENSO. Rev. Geophys, 33 , 13671376.

  • Chanin, M. L., V. Ramaswamy, D. J. Gaffen, W. J. Randel, R. B. Rood, and M. Shiotani, 1999: Trends in stratospheric temperatures. Scientific Assesment of Ozone Depletion, 1998: WMO Rep. 44, D. L. Albritton et al., Eds., 5.1–5.51.

    • Search Google Scholar
    • Export Citation
  • Donnelly, R. F., H. E. Hinteregger, and D. F. Heath, 1986: Temporal variations of solar EUV, UV, and 10830-å radiations. J. Geophys. Res., 91 , 55675578.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., D. P. Delisi, and M. P. Baldwin, 1998: Middle atmosphere cooling trend in historical rocketsonde data. Geophys. Res. Lett., 25 , 33713374.

    • Search Google Scholar
    • Export Citation
  • Eluszkiewicz, J., D. Crisp, R. G. Grainger, A. Lambert, J. B. Roche, A. E. Kumer, and J. L. Mergenthaler, 1997: Sensitivity of the residual circulation diagnosed from the UARS data to the uncertainties in the input fields and to the inclusion of aerosols. J. Atmos. Sci., 54 , 17391757.

    • Search Google Scholar
    • Export Citation
  • Friis-Christensen, E., and K. Lassen, 1991: Length of the solar cycle: An indicator of solar activity closely associated with climate. Science, 294 , 698700.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., S. A. Crooks, C. Pascoe, and S. Sparrow, 2004: Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci., 61 , 27772796.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., 1996: The impact of solar variability on climate. Science, 272 , 981984.

  • Haigh, J. D., 1999: A GCM study of climate change in response to the 11-year solar cycle. Quart. J. Roy. Meteor. Soc., 125 , 871892.

  • Haigh, J. D., 2000: Solar variability and climate. Weather, 55 , 399406.

  • Haigh, J. D., 2003: The effects of solar variability on the earth’s climate. Philos. Trans. Roy. Soc. London, 361 , 95111.

  • Harrison, D. E., and N. K. Larkin, 1998: El Niño–Southern Oscillation sea surface temperature and wind anomalies, 1956–1993. Rev. Geophys, 36 , 353399.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., 2004: Effects of solar UV variability on the stratosphere. Solar Variability and Its Effects on Climate, Geophys. Monogr., Vol. 141, Amer. Geophys. Union.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Nogeur, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 392 pp.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, and M. Visbeck, 2001: The North Atlantic Oscillation. Science, 291 , 603605.

  • Jones, P. D., T. Jonsson, and D. Wheeler, 1997: Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Climatol., 17 , 14331450.

    • Search Google Scholar
    • Export Citation
  • Keckhut, P., A. Hauchecorne, and M-L. Chanin, 1995: Midlatitude long-term variability of the middle atmosphere: Trends and cyclic and episodic changes. J. Geophys. Res., 100 , 1888718897.

    • Search Google Scholar
    • Export Citation
  • Keckhut, P., C. Cagnazzo, M-L. Chanin, C. Claud, and A. Hauchecorne, 2005: The 11-yr solar-cycle effects on the temperature in the upper-stratosphere and mesosphere. Part I: Assessment of observations. J. Atmos. Sol.-Terr. Phys., in press.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., and H. van Loon, 1988: Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the northern hemisphere. J. Atmos. Terr. Phys., 50 , 197206.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., J. Austin, N. Butchart, J. Knight, T. Masaaki, T. Nakamoto, J. Haigh, and V. Williams, 2002a: The global signal of the 11-year solar cycle in the stratosphere: Observations and models. J. Atmos. Sol.-Terr. Phys., 64 , 203210.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., and Coauthors, 2002b: The Berlin Stratospheric Data Series. Meteorological Institute, Free University Berlin, CD-ROM. [Available online at http://strat-www.met.fu-berlin.de/products/cdrom/*.].

    • Search Google Scholar
    • Export Citation
  • Larkin, A., J. D. Haigh, and S. Djavidnia, 2000: The effect of solar UV irradiance variations on the Earth’s atmosphere. Space Sci. Rev., 94 , 199214.

    • Search Google Scholar
    • Export Citation
  • Lee, H., and A. K. Smith, 2003: Simulation of the combined effects of solar cycle, frecent decades. J. Geophys. Res., 108 .4049, doi:10.1029/2001JD001503.

    • Search Google Scholar
    • Export Citation
  • Pascoe, C., L. J. Gray, S. A. Crooks, M. Juckes, and M. Baldwin, 2005: The Quasi-Biennial Oscillation: Analysis using era-40 data. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys, 39 , 72122.

  • Randel, W. J., F. Wu, R. Swinbank, J. Nash, and A. O’Neill, 1999: Global QBO circulation derived from UKMO stratospheric analyses. J. Atmos. Sci., 56 , 457474.

    • Search Google Scholar
    • Export Citation
  • Reid, G. C., 1994: Seasonal and interannual temperature variations in the tropical stratosphere. J. Geophys. Res., 99 , 1892318932.

  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys, 38 , 191219.

  • Salby, M. L., and D. J. Shea, 1991: Correlations between solar activity and the atmosphere: An unphysical explanation. J. Geophys. Res., 96 , 2257922595.

    • Search Google Scholar
    • Export Citation
  • Salby, M., and P. Callaghan, 2004: Evidence of the solar cycle in the general circulation of the stratosphere. J. Climate, 17 , 3446.

  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depth (1850–1990). J. Geophys. Res., 98 , 2298722994.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. Austin, N. Butchart, S. Pawson, M. Keil, J. Nash, and I. N. James, 2000: Seasonal and interannual variability of the stratosphere diagnosed from UKMO TOVS analyses. Quart. J. Roy. Meteor. Soc., 126 , 25852604.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and P. H. Haynes, 1998: Internal interannual variability of the extratropical stratospheric circulation: The low-latitude flywheel. Quart. J. Roy. Meteor. Soc., 124 , 21492173.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., R. Portmann, R. R. Garcia, L. W. Thomason, L. R. Poole, and M. P. McCormick, 1996: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res., 101 , 67136727.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., and K. Labitzke, 1999: The influence of the 11-year solar cycle on the stratosphere below 30 km: A review. Space Sci. Rev., 94 , 259278.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 467 272 29
PDF Downloads 343 213 26

Characterization of the 11-Year Solar Signal Using a Multiple Regression Analysis of the ERA-40 Dataset

View More View Less
  • 1 Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom
  • | 2 Department of Meteorology, Reading University, Reading, United Kingdom
Restricted access

Abstract

A multiple linear regression analysis of the ERA-40 dataset for the period 1979–2001 has been used to study the influence of the 11-yr solar cycle on atmospheric temperature and zonal winds. Volcanic, North Atlantic Oscillation (NAO), ENSO, and quasi-biennial oscillation (QBO) signatures are also presented. The solar signal is shown to be readily distinguishable from the volcanic signal. The main solar signal is a statistically significant positive response (i.e., warmer in solar maximum) of 1.75 K over the equator with peak values at 43 km and a reversed signal of similar magnitude at high latitudes that is seasonally dependent. Consistent with this is a statistically significant zonal wind response of up to 6 m s−1 in the subtropical upper stratosphere/lower mesosphere that is also seasonally dependent. The wind anomalies are westerly/easterly in solar maximum/minimum. In addition, there is a statistically significant temperature response in the subtropical lower stratosphere that shows similarity in spatial structure to the QBO response, suggesting a possible interaction between the solar and QBO signals in this region. The solar response in tropospheric zonal winds is small but significant, confirming previous studies that indicate a possible modulation of the Hadley circulation.

Corresponding author address: Simon Anthony Crooks, AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom. Email: crooks@atm.ox.ac.uk

Abstract

A multiple linear regression analysis of the ERA-40 dataset for the period 1979–2001 has been used to study the influence of the 11-yr solar cycle on atmospheric temperature and zonal winds. Volcanic, North Atlantic Oscillation (NAO), ENSO, and quasi-biennial oscillation (QBO) signatures are also presented. The solar signal is shown to be readily distinguishable from the volcanic signal. The main solar signal is a statistically significant positive response (i.e., warmer in solar maximum) of 1.75 K over the equator with peak values at 43 km and a reversed signal of similar magnitude at high latitudes that is seasonally dependent. Consistent with this is a statistically significant zonal wind response of up to 6 m s−1 in the subtropical upper stratosphere/lower mesosphere that is also seasonally dependent. The wind anomalies are westerly/easterly in solar maximum/minimum. In addition, there is a statistically significant temperature response in the subtropical lower stratosphere that shows similarity in spatial structure to the QBO response, suggesting a possible interaction between the solar and QBO signals in this region. The solar response in tropospheric zonal winds is small but significant, confirming previous studies that indicate a possible modulation of the Hadley circulation.

Corresponding author address: Simon Anthony Crooks, AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom. Email: crooks@atm.ox.ac.uk

Save