• Anderson, C. W., D. J. T. Carter, and P. D. Cotton, 2001: Wave climate variability and impact on offshore design extremes. Shell International and the Organization of Oil and Gas Producers Rep., 99 pp.

  • Anderson, T. W., 1984: Estimating linear statistical relationships. Ann. Stat., 12 , 145.

  • Baxevani, A., I. Rychlik, and R. J. Wilson, 2004: Modelling space variability of. Hs in the North Atlantic. Extremesin press.

  • Bidlot, J-R., D. J. Holmes, P. A. Wittmann, R. Lalbeharry, and H. S. Chen, 2002: Intercomparison of the performance of operational wave forecasting systems with buoy data. Wea. Forecasting, 17 , 287310.

    • Search Google Scholar
    • Export Citation
  • Caires, S., and A. Sterl, 2003a: On the estimation of return values of significant wave height data from the reanalysis of the European Centre for Medium-Range Weather Forecasts. Safety and Reliability: Proceedings of the European Safety and Reliability Conference, T. Bedford and P. van Gelder, Eds., Lisse, Swets & Zeitlinger, 353–361.

  • Caires, S., and A. Sterl, 2003b: Validation of ocean wind and wave data using triple collocation. J. Geophys. Res., 108 .3098, doi:10.1029/2002JC001491.

    • Search Google Scholar
    • Export Citation
  • Caires, S., and J. A. Ferreira, 2005: On the nonparametric prediction of conditionally stationary sequences. Stat. Inf. Stochastic Processes, 8 , 151184.

    • Search Google Scholar
    • Export Citation
  • Caires, S., and A. Sterl, 2005: A new nonparametric method to correct model data: Application to significant wave height from the ERA-40 reanalysis. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Caires, S., A. Sterl, J-R. Bidlot, N. Graham, and V. Swail, 2004: Intercomparison of different wind wave reanalyses. J. Climate, 17 , 18931913.

    • Search Google Scholar
    • Export Citation
  • Challenor, P., and D. Cotton, cited. 1999: Trends in TOPEX significant wave height measurement. [Available online at http://www.soc.soton.ac.uk/JRD/SAT/TOPtren/TOPtren.pdf.].

  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, 208 pp.

  • Coles, S., and L. Pericchi, 2003: Anticipating catastrophes through extreme value modelling. Appl. Stat., 53 , 405416.

  • Cook, N. J., 1982: Towards better estimates of extreme winds. J. Wind Eng. Ind. Aerodyn., 9 , 295323.

  • Davison, A. C., and R. L. Smith, 1990: Models for exceedances over high thresholds (with discussion). J. Roy. Stat. Soc., 52B , 393442.

    • Search Google Scholar
    • Export Citation
  • Ferguson, T. S., 1996: A Course in Large Sample Theory. Chapman and Hall, 245 pp.

  • Ferreira, J. A., and C. Guedes Soares, 1998: An application of the peaks over threshold method to predict extremes of significant wave height. J. Offshore Mech. Arct. Eng., 120 , 165176.

    • Search Google Scholar
    • Export Citation
  • Ferreira, J. A., and C. Guedes Soares, 2000: Modelling distributions of significant wave height. Coast. Eng., 40 , 361374.

  • Galambos, J., 1987: The Asymptotic Theory of Extreme Order Statistics. 2d ed. Krieger, 414 pp.

  • Gomes, M. Y., and M. A. J. van Montfort, 1986: Exponentiality versus generalized pareto, quick tests. Third Int. Conf. on Statistical Climatology, Vienna, Austria.

  • Gourrion, J., D. Vandemark, S. Bailey, B. Chapron, C. P. Gommenginger, P. G. Challenor, and M. A. Srokosz, 2002: A two parameter wind speed algorithm for Ku-band altimeters. J. Atmos. Oceanic Technol., 19 , 20302048.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and H. F. Diaz, 2001: Evidence of intensification of North Pacific winter cyclones since 1948. Bull. Amer. Meteor. Soc.,, 82 , 18691893.

    • Search Google Scholar
    • Export Citation
  • Hogg, W. D., and V. R. Swail, 2002: Effects of distributions and fitting techniques on extreme value analysis of modeled wave heights. Proc. Seventh Int. Workshop on Wave Hindcasting and Forecasting, Banff, AB, Canada, U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, the Fleet Numerical Meteorology and Oceanography Center, and the Meteorological Service of Canada, 140–150.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., and J. R. Wallis, 1987: Parameter and quantile estimation for the Generalized Pareto Distribution. Technometrics, 29 , 339349.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., J. D. Doyle, J. Bidlot, B. Hansen, L. Isaksen, and P. Viterbo, 2002: Impact and feedback of ocean waves on the atmosphere. . Advances in Fluid Mechanics, W. A. Perrie, Ed., Vol. 1, Kluwer, 155–197.

    • Search Google Scholar
    • Export Citation
  • Leadbetter, M. R., 1991: On a basis for “peaks over threshold” modeling. Stat. Prob. Lett., 12 , 357362.

  • Lozano, I., and V. Swail, 2002: The link between wave height variability in the North Atlantic and the storm track activity in the last four decades. Atmos.–Ocean, 40 , 377388.

    • Search Google Scholar
    • Export Citation
  • Robinson, M. E., and J. A. Tawn, 2000: Extremal analysis of processes sampled at different frequencies. J. Roy. Stat. Soc., 62B , 117135.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1997: North Atlantic storm track variability and its association to the North Atlantic oscillation and climate variability of northern Europe. J. Climate, 10 , 16351647.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 175 pp.

  • Simiu, E., N. A. Heckert, J. J. Filliben, and S. K. Johnson, 2001: Extreme wind load estimates based on Gumbel distribution of dynamic pressures and assessment. Struct. Saf., 23 , 221229.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., 2001: Development of the ERA-40 data assimilation system. Proc. ECMWF Workshop on Re-analysis, Reading, United Kingdom, ECMWF, ERA-40 Project Report Series 3, 11–30.

    • Search Google Scholar
    • Export Citation
  • Snaith, H. M., 2000: Global Altimeter Processing Scheme user manual: v1. Southampton Oceanography Centre Tech. Rep. 53, 44 pp.

  • Stephens, M. A., 1974: EDF statistics for goodness of fit and some comparisons. J. Amer. Stat. Assoc., 69 , 730737.

  • Wang, X. L., and V. R. Swail, 2001: Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate, 14 , 22042221.

    • Search Google Scholar
    • Export Citation
  • Witter, D. L., and D. B. Chelton, 1991: A Geosat altimeter wind speed algorithm and a method for wind speed algorithm development. J. Geophys. Res., 96 , 1885318860.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., H. F. Diaz, J. D. Elms, and S. J. Worley, 1998: COADS release 2 data and metadata enhancements for improvements of marine surface flux fields. Phys. Chem. Earth, 23 , 517527.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1993: An estimate of the Geosat altimeter wind speed algorithm at high wind speeds. J. Geophys. Res., 98 , 2027520285.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 931 493 32
PDF Downloads 809 417 13

100-Year Return Value Estimates for Ocean Wind Speed and Significant Wave Height from the ERA-40 Data

View More View Less
  • 1 Royal Netherlands Meteorological Institute, De Bilt, Netherlands
Restricted access

Abstract

In this article global estimates of 100-yr return values of wind speed and significant wave height are presented. These estimates are based on the ECMWF 40-yr Re-Analysis (ERA-40) data and are linearly corrected using estimates based on buoy data. This correction is supported by global Topographic Ocean Experiment (TOPEX) altimeter data estimates. The calculation of return values is based on the peaks-over-threshold method. The large amount of data used in this study provides evidence that the distributions of significant wave height and wind speed data belong to the domain of attraction of the exponential. Further, the effect of the space and time variability of significant wave height and wind speed on the prediction of their extreme values is assessed. This is done by performing detailed global extreme value analyses using different decadal subperiods of the 45-yr-long ERA-40 dataset.

Corresponding author address: Sofia Caires, KNMI, P.O. Box 201, NL-3730 AE De Bilt, Netherlands. Email: caires@knmi.nl

Abstract

In this article global estimates of 100-yr return values of wind speed and significant wave height are presented. These estimates are based on the ECMWF 40-yr Re-Analysis (ERA-40) data and are linearly corrected using estimates based on buoy data. This correction is supported by global Topographic Ocean Experiment (TOPEX) altimeter data estimates. The calculation of return values is based on the peaks-over-threshold method. The large amount of data used in this study provides evidence that the distributions of significant wave height and wind speed data belong to the domain of attraction of the exponential. Further, the effect of the space and time variability of significant wave height and wind speed on the prediction of their extreme values is assessed. This is done by performing detailed global extreme value analyses using different decadal subperiods of the 45-yr-long ERA-40 dataset.

Corresponding author address: Sofia Caires, KNMI, P.O. Box 201, NL-3730 AE De Bilt, Netherlands. Email: caires@knmi.nl

Save