• Albrecht, B. A., M. P. Jensen, and W. J. Syrett, 1995: Marine boundary layer structure and fractional cloudiness. J. Geophys. Res., 100 , D7,. 1420914222.

    • Search Google Scholar
    • Export Citation
  • Bachiochi, D. R., and T. N. Krishnamurti, 2000: Enhanced low-level stratus in the FSU coupled ocean–atmosphere model. Mon. Wea. Rev., 128 , 30833103.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and H. H. Hendon, 2000: Cloud radiative forcing of the low-latitude tropospheric circulation: Linear calculations. J. Atmos. Sci., 57 , 22252245.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54 , 148167.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85 , 967977.

  • Chou, M., M. J. Suarez, C-H. Ho, M. M-H. Yan, and K-T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate, 11 , 202214.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, National Center for Atmospheric Research, 72 pp.

  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. Part I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122 , 689719.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., J. Rutllant, J. Quintana, J. Carrasco, and P. Minnis, 2001: CIMAR-5: A snapshot of the lower troposphere over the subtropical southeast Pacific. Bull. Amer. Meteor. Soc., 82 , 2193. 2207.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Giorgi, F., and G. T. Bates, 1989: The climatological skill of a regional model over complex terrain. Mon. Wea. Rev., 117 , 23252347.

  • Gordon, C. T., A. Rosati, and R. Gudgel, 2000: Tropical sensitivity of a coupled model to specified ISCCP low clouds. J. Climate, 13 , 22392260.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., J-J. Moncrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, 2000: Revision of the convection, radiation and cloud schemes in the ECMWF model. Quart. J. Roy. Meteor. Soc., 126 , 26851710.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr. No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary-layer structure. J. Atmos. Sci., 52 , 28392850.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and C-S. Liou, 1996: Implementation of an E-ε parameterization of vertical subgrid-scale mixing in a regional model. Mon. Wea. Rev., 124 , 905918.

    • Search Google Scholar
    • Export Citation
  • Li, T., 1997: Air–sea interactions of relevance to the ITCZ: Analysis of coupled instabilities and experiments in the hybrid coupled GCM. J. Atmos. Sci., 54 , 134147.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Ma, C-C., C. R. Mechoso, A. W. Roberton, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation—A coupled ocean–atmosphere GCM study. J. Climate, 9 , 16351645.

    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., and C. S. Bretherton, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layer. Part II: Regional simulation of marine boundary layer clouds. Mon. Wea. Rev., 132 , 883896.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A., and B. A. Albrecht, 1995: Surface-based observations of mesoscale cumulus–stratocumulus interaction during ASTEX. J. Atmos. Sci., 52 , 28092826.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 2000: Entrainment rate, cloud fraction, and liquid water path of PBL stratocumulus clouds. J. Atmos. Sci., 57 , 36273643.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and D. H. Lenschow, 1995: Numerical investigation of the roles of radiative and evaporative feedbacks in stratocumulus entrainment and breakup. J. Atmos. Sci., 52 , 28692883.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., B. Wang, and S. W. Lyons, 1992: Contrasts between summer monsoons over the Bay of Bengal and the eastern North Pacific. J. Meteor. Soc. Japan, 70 , 191210.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 1997: The annual warm to cold phase transition in the eastern equatorial Pacific: Diagnosis of the role of stratus cloud-top cooling. J. Climate, 10 , 24472467.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1995: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Research Department Tech. Memo. 2006, 41 pp.

  • Norris, J. R., 1998: Low cloud structure over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11 , 383403.

    • Search Google Scholar
    • Export Citation
  • Paluch, L. R., G. McFarquhar, and D. H. Lenschow, 1999: Marine boundary layers associated with ocean upwelling over the eastern equatorial Pacific Ocean. J. Geophys. Res., 104 , D24,. 3091330936.

    • Search Google Scholar
    • Export Citation
  • Philander, S. C. H., D. Gu, D. Halpern, G. Lambert, N-C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9 , 29582972.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Coakley Jr., C. W. Fairall, R. A. Kropfli, and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65 , 12901301.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rockel, B., E. Raschke, and B. Weyres, 1991: A parameterization of broad band radiative transfer properties of water, ice and mixed clouds. Beitr. Phys. Atmos., 64 , 112.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., and H. M. Schrecker, 1982: On the shortwave radiative properties of water clouds. Quart. J. Roy. Meteor. Soc., 108 , 407426.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S-P. Xie, and Y. Wang, 2003: Numerical simulation of atmospheric response to Pacific tropical instability waves. J. Climate, 16 , 37223737.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layer. J. Atmos. Sci., 55 , 36163638.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: On entrainment rates in nocturnal marine stratocumulus. Quart. J. Roy. Meteor. Soc., 129 , 34693485.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., and K. Shine, 1994: Studies of the radiative properties of ice and mixed phase clouds. Quart. J. Roy. Meteor. Soc., 120 , 111137.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., and L. Rikus, 1999: Improved application of exponential sum fitting transmissions to inhomogeneous atmosphere. J. Geophys. Res., 104 , D6,. 62916303.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., and D. Pethick, 2002: Comparison between observed and modeled radiative properties of stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 128 , 26912712.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., and P. J. Webster, 1997: The role of inertial instability in determining the location and strength of near-equatorial convection. Quart. J. Roy. Meteor. Soc., 123 , 14451482.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13 , 39693993.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Y. Wang, 1999: Dynamics of the ITCZ-equatorial cold tongue complex and causes of the latitudinal climate asymmetry. J. Climate, 12 , 18301847.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 1996: On the forward-in-time upstream advection scheme for non-uniform and time-dependent flow. Meteor. Atmos. Phys., 61 , 2738.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 1999: A triply nested movable mesh tropical cyclone model with explicit cloud microphysics—TCM3. BMRC Research Rep. 74, Bureau of Meteorology Research Centre, Australia, 81 pp.

  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129 , 13701394.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130 , 30223036.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., O. L. Sen, and B. Wang, 2003: A highly resolved regional climate model (IPRC–RegCM) and its simulation of the 1998 severe precipitation events over China. Part I: Model description and verification of simulation. J. Climate, 16 , 17211738.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., S-P. Xie, H. Xu, and B. Wang, 2004a: Regional model simulations of boundary layer clouds over the southeast Pacific off South America. Part I: Control experiment. Mon. Wea. Rev., 132 , 275296.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., H. Xu, and S-P. Xie, 2004b: Regional model simulations of boundary layer clouds over the southeast Pacific off South America. Part II: Sensitivity experiments. Mon. Wea. Rev., 132 , 26502668.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the subtropical marine stratocumulus to trade cumulus transition. J. Atmos. Sci., 54 , 168192.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 1996: Westward propagation of latitudinal asymmetry in a coupled ocean–atmosphere model. J. Atmos. Sci., 53 , 32363250.

  • Xie, S-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A , 340350.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and K. Saito, 2001: Formation and variability of a northerly ITCZ in a hybrid coupled AGCM: Continental forcing and oceanic–atmospheric feedback. J. Climate, 14 , 12621276.

    • Search Google Scholar
    • Export Citation
  • Xu, H., Y. Wang, and S-P. Xie, 2004: Effects of the Andes on eastern Pacific climate: A regional atmospheric model study. J. Climate, 17 , 589602.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53 , 30843102.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., and C. R. Mechoso, 1999: Links between annual variations of Peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J. Climate, 12 , 33053318.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., Y. Serra, and R. A. Houze Jr., 2000: The 1997 Pan American Climate Studies Tropical Eastern Pacific Process Study. Part II: Stratocumulus region. Bull. Amer. Meteor. Soc., 81 , 483490.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., M. McGauley, and N. A. Bond, 2004: Shallow meridional circulation in the tropical eastern Pacific. J. Climate, 17 , 133139.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 57 2
PDF Downloads 51 25 1

Large-Scale Atmospheric Forcing by Southeast Pacific Boundary Layer Clouds: A Regional Model Study

View More View Less
  • 1 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

A regional model is used to study the radiative effect of boundary layer clouds over the southeast Pacific on large-scale atmosphere circulation during August–October 1999. With the standard settings, the model simulates reasonably well the large-scale circulation over the eastern Pacific, precipitation in the intertropical convergence zone (ITCZ) north of the equator, and marine boundary layer stratocumulus clouds to the south. In a sensitivity experiment with the radiative effect of liquid clouds south of the equator over the eastern Pacific artificially removed, boundary layer clouds south of the equator almost disappear and precipitation in the ITCZ is reduced by 15%–20%, indicating that the stratocumulus clouds over the southeast Pacific have both local and cross-equatorial effects.

Examination of the differences between the control and sensitivity experiments indicates that clouds exert a net diabatic cooling in the inversion layer. In response to this cloud-induced cooling, an in situ anomalous high pressure system develops in the boundary layer and an anomalous shallow meridional circulation develops in the lower troposphere over the equatorial eastern Pacific. At the lower branch of this shallow circulation, anomalous boundary layer southerlies blow from the boundary layer high toward the northern ITCZ where the air ascends. An anomalous returning flow (northerly) just above the cloud layer closes the shallow circulation.

This low-level anomalous shallow circulation enhances the subsidence over the southeast Pacific above the cloud layer, helping to maintain boundary layer clouds and temperature inversion there. Meanwhile, the strengthened cross-equatorial flow near the surface enhances moisture convergence and convection in the ITCZ north of the equator. This in turn strengthens the local, deep Hadley circulation and hence the large-scale subsidence and boundary layer clouds over the southeast Pacific. This positive feedback therefore enhances the interhemispheric climate asymmetry over the tropical eastern Pacific.

+ Additional affiliation: Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Corresponding author address: Dr. Yuqing Wang, IPRC/SOEST, University of Hawaii at Manoa, 2525 Correa Road, Honolulu, HI 96822. Email: yqwang@soest.hawaii.edu

Abstract

A regional model is used to study the radiative effect of boundary layer clouds over the southeast Pacific on large-scale atmosphere circulation during August–October 1999. With the standard settings, the model simulates reasonably well the large-scale circulation over the eastern Pacific, precipitation in the intertropical convergence zone (ITCZ) north of the equator, and marine boundary layer stratocumulus clouds to the south. In a sensitivity experiment with the radiative effect of liquid clouds south of the equator over the eastern Pacific artificially removed, boundary layer clouds south of the equator almost disappear and precipitation in the ITCZ is reduced by 15%–20%, indicating that the stratocumulus clouds over the southeast Pacific have both local and cross-equatorial effects.

Examination of the differences between the control and sensitivity experiments indicates that clouds exert a net diabatic cooling in the inversion layer. In response to this cloud-induced cooling, an in situ anomalous high pressure system develops in the boundary layer and an anomalous shallow meridional circulation develops in the lower troposphere over the equatorial eastern Pacific. At the lower branch of this shallow circulation, anomalous boundary layer southerlies blow from the boundary layer high toward the northern ITCZ where the air ascends. An anomalous returning flow (northerly) just above the cloud layer closes the shallow circulation.

This low-level anomalous shallow circulation enhances the subsidence over the southeast Pacific above the cloud layer, helping to maintain boundary layer clouds and temperature inversion there. Meanwhile, the strengthened cross-equatorial flow near the surface enhances moisture convergence and convection in the ITCZ north of the equator. This in turn strengthens the local, deep Hadley circulation and hence the large-scale subsidence and boundary layer clouds over the southeast Pacific. This positive feedback therefore enhances the interhemispheric climate asymmetry over the tropical eastern Pacific.

+ Additional affiliation: Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Corresponding author address: Dr. Yuqing Wang, IPRC/SOEST, University of Hawaii at Manoa, 2525 Correa Road, Honolulu, HI 96822. Email: yqwang@soest.hawaii.edu

Save