Abstract
The climatology and interannual variability of landfalling tropical cyclones and their impacts on precipitation in the continental United States and Mexico are examined. The analysis is based on National Hurricane Center 6-hourly tropical cyclone track data for the Atlantic and eastern Pacific basins and gridded daily U.S. precipitation data for the period August–October 1950–98. Geographic maps of total tropical cyclone strike days, and the mean and maximum percentage of precipitation due to tropical cyclones, are examined by month. To make the procedures objective, it is assumed that precipitation is symmetric about the storm’s center. While this introduces some uncertainty in the analysis, sensitivity tests show that this assumption is reasonable for precipitation within 5° of the circulation center.
The relationship between landfalling tropical cyclones and two leading patterns of interannual climate variability—El Niño–Southern Oscillation (ENSO) and the Arctic Oscillation (AO)—are then examined. Relationships between tropical cyclone frequency and intensity and composites of 200-hPa geopotential height and wind shear anomalies are also examined as a function of ENSO phase and AO phase using classifications devised at the Climate Prediction Center.
The data show that tropical cyclone activity in the Atlantic basin is modulated on both seasonal and intraseasonal time scales by the AO and ENSO and that impact of the two modes of climate variability is greater together than apart. This suggests that, during La Niña conditions, atmospheric circulation is more conducive to activity in the main development region during AO-positive conditions than during AO-negative ones and that, during El Niño conditions, atmospheric circulation appears even less conducive to tropical cyclone development during the negative phase of the AO than during the positive phase.
Corresponding author address: Dr. R. W. Higgins, Analysis Branch, Climate Prediction Center, NOAA/NWS/NCEP, Camp Springs, MD 20746. Email: wayne.higgins@noaa.gov