Interdecadal Change in Properties of El Niño–Southern Oscillation in an Intermediate Coupled Model

Rong-Hua Zhang Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, College Park, Maryland

Search for other papers by Rong-Hua Zhang in
Current site
Google Scholar
PubMed
Close
and
Antonio J. Busalacchi Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, College Park, Maryland

Search for other papers by Antonio J. Busalacchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of subsurface temperature variability in modulating El Niño–Southern Oscillation (ENSO) properties is examined using an intermediate coupled model (ICM), consisting of an intermediate dynamic ocean model and a sea surface temperature (SST) anomaly model. An empirical procedure is used to parameterize the temperature of subsurface water entrained into the mixed layer (Te) from sea level (SL) anomalies via a singular value decomposition (SVD) analysis for use in simulating sea surface temperature anomalies (SSTAs). The ocean model is coupled to a statistical atmospheric model that estimates wind stress anomalies also from an SVD analysis. Using the empirical Te models constructed from two subperiods, 1963–79 (T63–79e) and 1980–96 (T80–96e), the coupled system exhibits strikingly different properties of interannual variability (the oscillation period, spatial structure, and temporal evolution). For the T63–79e model, the system features a 2-yr oscillation and westward propagation of SSTAs on the equator, while for the T80–96e model, it is characterized by a 5-yr oscillation and eastward propagation. These changes in ENSO properties are consistent with the behavior shift of El Niño observed in the late 1970s. Heat budget analyses further demonstrate a controlling role played by the vertical advection of subsurface temperature anomalies in determining the ENSO properties.

Corresponding author address: Rong-Hua Zhang, ESSIC, University of Maryland, Computer and Space Science Building #224, College Park, MD 20742. Email: rzhang@essic.umd.edu

Abstract

The role of subsurface temperature variability in modulating El Niño–Southern Oscillation (ENSO) properties is examined using an intermediate coupled model (ICM), consisting of an intermediate dynamic ocean model and a sea surface temperature (SST) anomaly model. An empirical procedure is used to parameterize the temperature of subsurface water entrained into the mixed layer (Te) from sea level (SL) anomalies via a singular value decomposition (SVD) analysis for use in simulating sea surface temperature anomalies (SSTAs). The ocean model is coupled to a statistical atmospheric model that estimates wind stress anomalies also from an SVD analysis. Using the empirical Te models constructed from two subperiods, 1963–79 (T63–79e) and 1980–96 (T80–96e), the coupled system exhibits strikingly different properties of interannual variability (the oscillation period, spatial structure, and temporal evolution). For the T63–79e model, the system features a 2-yr oscillation and westward propagation of SSTAs on the equator, while for the T80–96e model, it is characterized by a 5-yr oscillation and eastward propagation. These changes in ENSO properties are consistent with the behavior shift of El Niño observed in the late 1970s. Heat budget analyses further demonstrate a controlling role played by the vertical advection of subsurface temperature anomalies in determining the ENSO properties.

Corresponding author address: Rong-Hua Zhang, ESSIC, University of Maryland, Computer and Space Science Building #224, College Park, MD 20742. Email: rzhang@essic.umd.edu

Save
  • An, S-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13 , 20442055.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., M. Latif, N. Graham, M. Flugel, S. Pazan, and W. White, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Climate, 6 , 15451566.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., D. W. Pierce, M. Latif, D. Dommenget, and R. Saravanan, 1999: Interdecadal interactions between the tropics and midlatitude in the Pacific basin. Geophys. Res. Lett., 26 , 615618.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. H. Philander, 2000: Is El Niño changing? Science, 228 , 19972002.

  • Gu, D-F., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., and S-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillation model for ENSO. Geophys. Res. Lett., 26 , 29892992.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Keenlyside, N., 2001: Improved modeling of zonal currents and SST in the tropical Pacific. Ph.D. thesis, Monash University, 193 pp.

  • Keenlyside, N., and R. Kleeman, 2002: Annual cycle of equatorial zonal currents in the Pacific. J. Geophys. Res., 107 .3093, doi:10.1029/2000JC000711.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Latif, M., R. Kleeman, and C. Eckert, 1997: Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Climate, 10 , 22212239.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., T. P. Boyer, and J. Antonov, 1994: Interannual Variability of Upper Ocean Thermal Structure. Vol. 5, World Ocean Atlas 1994, NOAA Atlas NESDIS 5, 176 pp.

  • McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, 298 , 603635.

  • McPhaden, M. J., and D. Zhang, 2002: Decadal spin-down of the Pacific Ocean shallow meridional overturning circulation. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994: The 1976–77 climate shift of the Pacific Ocean. Oceanography, 7 , 2126.

    • Search Google Scholar
    • Export Citation
  • Münnich, M., M. A. Cane, and S. E. Zebiak, 1991: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part II: Nonlinear cases. J. Atmos. Sci., 48 , 12381248.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48 , 584606.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., S. Venzke, A. J. Miller, D. W. Pierce, T. P. Barnett, and M. Latif, 1999: Pacific thermocline bridge revisited. Geophys. Res. Lett., 26 , 13291332.

    • Search Google Scholar
    • Export Citation
  • Syu, H-H., J. D. Neelin, and D. Gutzler, 1995: Seasonal and interannual variability in a hybrid coupled GCM. J. Climate, 8 , 21212143.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and F-F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett., 29 .1003, doi:10.1029/2001GL013369.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrel, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9 , 303319.

  • Wang, B., and S-I. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28 , 37093712.

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zhang, R-H., and A. J. Busalacchi, 1999: A possible link between off-equatorial warm anomalies propagating along the NECC path and the onset of the 1997–98 El Niño. Geophys. Res. Lett., 26 , 28732876.

    • Search Google Scholar
    • Export Citation
  • Zhang, R-H., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Niño change on decadal scale in the tropical Pacific Ocean. Nature, 391 , 879883.

    • Search Google Scholar
    • Export Citation
  • Zhang, R-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30 .2012, doi:10.1029/2003GL018010.

    • Search Google Scholar
    • Export Citation
  • Zhang, R-H., R. Kleeman, S. E. Zebiak, N. Keenlyside, and S. Raynaud, 2005: An empirical parameterization of subsurface entrainment temperature for improved SST anomaly simulations in an intermediate ocean model. J. Climate, 18 , 350371.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 33 3
PDF Downloads 62 20 1