• Alfaro, S. C., , and L. Gomes, 2001: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distribution in source areas. J. Geophys. Res., 106 , 1807518084.

    • Search Google Scholar
    • Export Citation
  • An, Z. S., , T. S. Liu, , Y. C. Lu, , S. C. Porter, , G. Kukla, , X. H. Wu, , and Y. M. Hua, 1990: The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China. Quat. Int., 718 , 9195.

    • Search Google Scholar
    • Export Citation
  • Bergametti, G., 1998: Mineral aerosols: Renewed interest for climate forcing and tropospheric chemistry studies. IGACtivities Newsletter, No. 1, IGAC Core Project Office, 13–17.

  • Chen, W., , D. W. Fryear, , and Z. Yang, 1999: Dust fall in the Taklamakan Desert of China. Phys. Geogr., 20 , 189224.

  • Chun, Y., , K-O. Boo, , J. Kim, , S-U. Park, , and M. Lee, 2001: Synopsis, transport and physical characteristics of Asian dust in Korea. J. Geophys. Res., 106 , 1846118469.

    • Search Google Scholar
    • Export Citation
  • Chung, Y. S., 1992: On the observation of yellow sand in Korea. Atmos. Environ., 26A , 27432749.

  • Chung, Y. S., , H. S. Kim, , K. H. Park, , J. G. Jhun, , and S. J. Chen, 2003: Atmospheric loadings, concentrations and visibility associated with sandstorms: Satellite and meteorological analysis. Water Air Soil Pollut. Focus, 3 , 2140.

    • Search Google Scholar
    • Export Citation
  • Dentener, F. J., , G. R. Camichael, , Y. Zhang, , J. Lelieveld, , and P. J. Crutzen, 1996: Role of mineral aerosols as a reactive surface in the global troposphere. J. Geophys. Res., 101 , 2286922889.

    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 1994: Monsoons over China. Kluwer Academic, 419 pp.

  • Duce, R. A., , C. K. Unni, , B. J. Ray, , J. M. Prospero, , and J. T. Merrill, 1980: Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability. Science, 209 , 15221524.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., , M. Chin, , I. Tegan, , J. M. Prospero, , B. Holben, , O. Dubovik, , and S-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106 , 2025520273.

    • Search Google Scholar
    • Export Citation
  • Gong, S. L., , X. Y. Zhang, , T. L. Zhao, , I. G. McKendry, , D. A. Jaffe, , and N. M. Lu, 2003a: Characterization of soil dust distributions in China and its transport during ACE-ASIA: 2. Model simulation and validation. J. Geophys. Res., 108 .4262, doi:10.1029/2002JD002633.

    • Search Google Scholar
    • Export Citation
  • Gong, S. L., and Coauthors, 2003b: Canadian Aerosol Module: A size segregated simulation of atmospheric aerosol processes for climate and air quality models: 1. Module development. J. Geophys. Res., 108 .4007, doi:10.1029/2001JD002002.

    • Search Google Scholar
    • Export Citation
  • Gong, S. L., , X. Y. Zhang, , T. L. Zhao, , X. B. Zhang, , L. A. Barrie, , I. G. McKendry, , and C. S. Zhao, 2006: A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual variability and climate connections. J. Climate, 19 , 104122.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., , I. G. McKendry, , and D. A. Jaffe, 2003: Springtime trans-Pacific atmospheric transport from east Asia: A transit-time probability density function approach. J. Geophys. Res., 108 .4708, doi:10.1029/2003JD003558.

    • Search Google Scholar
    • Export Citation
  • Husar, R. B., , J. M. Prospero, , and L. L. Stowe, 1997: Characterization of tropospheric aerosols over the oceans with the NOAA Advanced Very High Resolution Radiometer optical thickness operational product. J. Geophys. Res., 102 , 1688916909.

    • Search Google Scholar
    • Export Citation
  • Husar, R. B., and Coauthors, 2001: Asian dust events of April 1998. J. Geophys. Res., 106 , 1831718330.

  • Levin, Z., , E. Ganor, , and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteor., 35 , 15111523.

    • Search Google Scholar
    • Export Citation
  • Liu, M., , D. L. Westphal, , S. Wang, , A. Shimizu, , N. Sugimoto, , J. Zhou, , and Y. Chen, 2003: A high-resolution numerical study of the Asian dust storms of April 2001. J. Geophys. Res., 108 .8653, doi:10.1029/2002JD003178.

    • Search Google Scholar
    • Export Citation
  • Liu, T. S., 1985: Loess and the Environment. China Science Press, 206 pp.

  • Luo, C., , N. M. Mahowald, , and J. d. Corral, 2003: Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J. Geophys. Res., 108 .4447, doi:10.1029/2003JD003483.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., , and C. Luo, 2003: A less dusty future. Geophys. Res. Lett., 30 .1903, doi:10.1029/2003GL017880.

  • Mahowald, N., , C. Luo, , J. d. Corral, , and C. S. Zender, 2003: Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data. J. Geophys. Res., 108 .4352, doi:10.1029/2002JD002821.

    • Search Google Scholar
    • Export Citation
  • Marticorena, B., , and G. Bergametti, 1995: Modeling the atmospheric dust cycle. Part 1: Design of a soil-derived dust emission scheme. J. Geophys. Res., 100 , 1641516430.

    • Search Google Scholar
    • Export Citation
  • Marticorena, B., , G. Bergametti, , and B. Aumont, 1997: Modeling the atmospheric dust cycle. Part 2: Simulation of Saharan dust sources. J. Geophys. Res., 102 , 43874404.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., , G. J. Boer, , J-P. Blanchet, , and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Search Google Scholar
    • Export Citation
  • Merrill, J. T., , M. Uematsu, , and R. Bleck, 1989: Meteorological analysis of long-range transport of mineral aerosol over the North Pacific. J. Geophys. Res., 94 , 85848598.

    • Search Google Scholar
    • Export Citation
  • Merrill, J. T., , E. Arnold, , M. Leinen, , and C. Weaver, 1994: Mineralogy of aeolian dust reaching the North Pacific Ocean: 2. Relationship of mineral assemblages to atmospheric transport patterns. J. Geophys. Res., 99 , 2102521032.

    • Search Google Scholar
    • Export Citation
  • Moulin, C., and Coauthors, 1998: Satellite climatology of African dust transport in the Mediterranean atmosphere. J. Geophys. Res., 103 , 1313713144.

    • Search Google Scholar
    • Export Citation
  • Natsagdorj, L., , D. Jugder, , and Y. S. Chung, 2003: Analysis of dust storms observed in Mongolia during 1937–1999. Atmos. Environ., 37 , 14011411.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., 1981: Eolian transport to the World Ocean. The Sea, C. Emiliani, Ed., The Oceanic Lithosphere, Vol. 7, Wiley, 801–874.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., , P. Ginoux, , O. Torres, , S. E. Nicholson, , and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS-7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40 .1002, doi:10.1029/2000RG000095.

    • Search Google Scholar
    • Export Citation
  • Qian, W., , L. Quan, , and S. Shi, 2002: Variability of the dust storm in China and climatic control. J. Climate, 15 , 12161229.

  • Robert, A., , T. L. Yee, , and H. Ritchie, 1985: A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Wea. Rev., 113 , 388394.

    • Search Google Scholar
    • Export Citation
  • Sokolik, I. N., , and O. B. Toon, 1996: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381 , 681683.

  • Sokolik, I. N., , D. Winker, , G. Bergametti, , D. Gillette, , G. Caarmichael, , Y. Kaufman, , L. Gomes, , L. Schuetz, , and J. Penner, 2001: Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res., 106 , 1801518027.

    • Search Google Scholar
    • Export Citation
  • Sun, J., , M. Zhang, , and T. Liu, 2001: Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res., 106 , 1032510333.

    • Search Google Scholar
    • Export Citation
  • Sun, L., , X. Zhou, , J. Lu, , Y-P. Kim, , and Y-S. Chung, 2003: Climatology, trend analysis and prediction of sandstorm and their associated dustfall in China. Water Air Soil Pollut. Focus, 3 , 4150.

    • Search Google Scholar
    • Export Citation
  • Takmura, T., , I. Uno, , T. Nakajima, , A. Higurashi, , and I. Sano, 2002: Modeling study of long-range transport of Asian dust and anthropogenic aerosols from East Asia. Geophys. Res. Lett., 29 .2158, doi:10.1029/2002GL016251.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., , and I. Fung, 1994: Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res., 99 , 2289722914.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., , and R. L. Miller, 1998: A general circulation model study on the interannual variability of soil dust aerosol. J. Geophys. Res., 103 , 2597525995.

    • Search Google Scholar
    • Export Citation
  • Uematsu, M., , R. A. Duce, , J. M. Prospero, , L. Chen, , J. T. Merrill, , and R. L. McDonald, 1983: Transport of mineral aerosol from Asia over the North Pacific Ocean. J. Geophys. Res., 88 , 53435352.

    • Search Google Scholar
    • Export Citation
  • Uno, I., and Coauthors, 2003: Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment. J. Geophys. Res., 108 .8668, doi:10.1029/2002JD002845.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: CLASS—A Canadian land surface scheme for GCMS. I: Soil model. Int. J. Climatol., 11 , 111133.

  • Xuan, J., , and I. N. Sokolik, 2002: Characterization of sources and emission rates of mineral dust in Northern China. Atmos. Environ., 36 , 48634876.

    • Search Google Scholar
    • Export Citation
  • Zender, C. S., , H. Bian, , and D. Newman, 2003: Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res., 108 .4416, doi:10.1029/2002JD002775.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , R. Arimoto, , Z. An, , T. Chen, , G. Zhu, , and X. Wang, 1993: Atmospheric trace elements over source regions for Chinese dust: Concentrations, sources and atmospheric deposition on the Loess Plateau. Atmos. Environ., 27 , 20512067.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , Z. Shen, , G. Zhang, , T. Chen, , and H. Liu, 1996a: Remote mineral aerosol in westerlies and their contributions to Chinese loess. Sci. China, 39D , 6776.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , G. Y. Zhang, , G. H. Zhu, , D. E. Zhang, , T. Chen, , and X. P. Huang, 1996b: Elemental tracers for Chinese source dust. Sci. China, 39D , 512521.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , R. Arimoto, , and Z. S. An, 1997: Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res., 102 , 2804128047.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , R. Arimoto, , G. H. Zhu, , T. Chen, , and G. Y. Zhang, 1998: Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus, 50B , 317330.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , S. L. Gong, , T. L. Zhao, , R. Arimoto, , Y. Q. Wang, , and Z. J. Zhou, 2003a: Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett., 30 .2272, doi:10.1029/2003GL018206.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , S. L. Gong, , and Z. J. Zhou, 2003b: Characterization of soil dust distributions in China and its transport during ACE-ASIA: 1. Network observations. J. Geophys. Res., 108 .4261, doi:10.1029/2002JD002632.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., , X. Dabu, , and Y. Li, 2004: Relationship between climatic factors and dust storm frequency in the Inner Mongolia of China. Geophys. Res. Lett., 31 .L01103, doi:10.1029/2003GL018351.

    • Search Google Scholar
    • Export Citation
  • Zhao, T. L., , S. L. Gong, , X. Y. Zhang, , and I. G. Mckendry, 2003: Modeled size segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: Implications for trans-Pacific transport. J. Geophys. Res., 108 .8665, doi:10.1029/2002JD003363.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z. J., 2001: Blowing sand storm in China in recent 45 years (in Chinese). Quat. Sci., 21 , 917.

  • Zhou, Z. J., , and G. C. Zhang, 2003: Typical severe dust storms in northern China during 1954–2002. Chinese Sci. Bull., 48 , 23662370.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 195 20
PDF Downloads 161 161 22

A Simulated Climatology of Asian Dust Aerosol and Its Trans-Pacific Transport. Part I: Mean Climate and Validation

View More View Less
  • 1 Air Quality Research Branch, Meteorological Service of Canada, Toronto, Ontario, Canada, and Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
  • | 2 Air Quality Research Branch, Meteorological Service of Canada, Toronto, Ontario, Canada, and Institute of Earth Environment, Chinese Academy of Sciences, Xian, China
  • | 3 Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, and Institute of Earth Environment, Chinese Academy of Sciences, Xian, China
  • | 4 Earth Sciences Department, University of Quebec at Montreal, Montreal, Quebec, Canada
  • | 5 Atmospheric Science Programme/Geography, University of British Columbia, Vancouver, British Columbia, Canada
  • | 6 National Meteorological Centre, China Meteorological Administration, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Northern Aerosol Regional Climate Model (NARCM) was used to construct a 44-yr climatology of spring Asian dust aerosol emission, column loading, deposition, trans-Pacific transport routes, and budgets during 1960–2003. Comparisons with available ground dust observations and Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) measurements verified that NARCM captured most of the climatological characteristics of the spatial and temporal distributions, as well as the interannual and daily variations of Asian dust aerosol during those 44 yr. Results demonstrated again that the deserts in Mongolia and in western and northern China (mainly the Taklimakan and Badain Juran, respectively) were the major sources of Asian dust aerosol in East Asia. The dust storms in spring occurred most frequently from early April to early May with a daily averaged dust emission (diameter d < 41 μm) of 1.58 Mt in April and 1.36 Mt in May. Asian dust aerosol contributed most of the dust aerosol loading in the troposphere over the midlatitude regions from East Asia to western North America during springtime. Climatologically, dry deposition was a dominant dust removal process near the source areas, while the removal of dust particles by precipitation was the major process over the trans-Pacific transport pathway (where wet deposition exceeded dry deposition up to a factor of 20). The regional transport of Asian dust aerosol over the Asian subcontinent was entrained to an elevation of <3 km. The frontal cyclone in Mongolia and northern China uplifted dust aerosol in the free troposphere for trans-Pacific transport. Trans-Pacific dust transport peaked between 3 and 10 km in the troposphere along a zonal transport axis around 40°N. Based on the 44-yr-averaged dust budgets for the modeling domain from East Asia to western North America, it was estimated that of the average spring dust aerosol (diameter d < 41 μm) emission of ∼120 Mt from Asian source regions, about 51% was redeposited onto the source regions, 21% was deposited onto nondesert regions within the Asian subcontinent, and 26% was exported from the Asian subcontinent to the Pacific Ocean. In total, 16% of Asian dust aerosol emission was deposited into the North Pacific, while ∼3% of Asian dust aerosol was carried to the North American continent via trans-Pacific transport.

Corresponding author address: Dr. S. L. Gong, Air Quality Research Branch, Meteorological Service of Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada. Email: sunling.gong@ec.gc.ca

Abstract

The Northern Aerosol Regional Climate Model (NARCM) was used to construct a 44-yr climatology of spring Asian dust aerosol emission, column loading, deposition, trans-Pacific transport routes, and budgets during 1960–2003. Comparisons with available ground dust observations and Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) measurements verified that NARCM captured most of the climatological characteristics of the spatial and temporal distributions, as well as the interannual and daily variations of Asian dust aerosol during those 44 yr. Results demonstrated again that the deserts in Mongolia and in western and northern China (mainly the Taklimakan and Badain Juran, respectively) were the major sources of Asian dust aerosol in East Asia. The dust storms in spring occurred most frequently from early April to early May with a daily averaged dust emission (diameter d < 41 μm) of 1.58 Mt in April and 1.36 Mt in May. Asian dust aerosol contributed most of the dust aerosol loading in the troposphere over the midlatitude regions from East Asia to western North America during springtime. Climatologically, dry deposition was a dominant dust removal process near the source areas, while the removal of dust particles by precipitation was the major process over the trans-Pacific transport pathway (where wet deposition exceeded dry deposition up to a factor of 20). The regional transport of Asian dust aerosol over the Asian subcontinent was entrained to an elevation of <3 km. The frontal cyclone in Mongolia and northern China uplifted dust aerosol in the free troposphere for trans-Pacific transport. Trans-Pacific dust transport peaked between 3 and 10 km in the troposphere along a zonal transport axis around 40°N. Based on the 44-yr-averaged dust budgets for the modeling domain from East Asia to western North America, it was estimated that of the average spring dust aerosol (diameter d < 41 μm) emission of ∼120 Mt from Asian source regions, about 51% was redeposited onto the source regions, 21% was deposited onto nondesert regions within the Asian subcontinent, and 26% was exported from the Asian subcontinent to the Pacific Ocean. In total, 16% of Asian dust aerosol emission was deposited into the North Pacific, while ∼3% of Asian dust aerosol was carried to the North American continent via trans-Pacific transport.

Corresponding author address: Dr. S. L. Gong, Air Quality Research Branch, Meteorological Service of Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada. Email: sunling.gong@ec.gc.ca

Save