Diurnal Coupling in the Tropical Oceans of CCSM3

Gokhan Danabasoglu National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Gokhan Danabasoglu in
Current site
Google Scholar
PubMed
Close
,
William G. Large National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by William G. Large in
Current site
Google Scholar
PubMed
Close
,
Joseph J. Tribbia National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Joseph J. Tribbia in
Current site
Google Scholar
PubMed
Close
,
Peter R. Gent National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Peter R. Gent in
Current site
Google Scholar
PubMed
Close
,
Bruce P. Briegleb National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Bruce P. Briegleb in
Current site
Google Scholar
PubMed
Close
, and
James C. McWilliams National Center for Atmospheric Research,* Boulder, Colorado, and Department of Atmospheric Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

New features that may affect the behavior of the upper ocean in the Community Climate System Model version 3 (CCSM3) are described. In particular, the addition of an idealized diurnal cycle of solar forcing where the daily mean solar radiation received in each daily coupling interval is distributed over 12 daylight hours is evaluated. The motivation for this simple diurnal cycle is to improve the behavior of the upper ocean, relative to the constant forcing over each day of previous CCSM versions. Both 1- and 3-h coupling intervals are also considered as possible alternatives that explicitly resolve the diurnal cycle of solar forcing. The most prominent and robust effects of all these diurnal cycles are found in the tropical oceans, especially in the Pacific. Here, the mean equatorial sea surface temperature (SST) is warmed by as much as 1°C, in better agreement with observations, and the mean boundary layer depth is reduced. Simple rectification of the diurnal cycle explains about half of the shallowing, but less than 0.1°C of the warming. The atmospheric response to prescribed warm SST anomalies of about 1°C displays a very different heat flux signature. The implication, yet to be verified, is that large-scale air–sea coupling is a prime mechanism for amplifying the rectified, daily averaged SST signals seen by the atmosphere. Although the use of upper-layer temperature for SST in CCSM3 underestimates the diurnal cycle of SST, many of the essential characteristics of diurnal cycling within the equatorial ocean are reproduced, including boundary layer depth, currents, and the parameterized vertical heat and momentum fluxes associated with deep-cycle turbulence. The conclusion is that the implementation of an idealized diurnal cycle of solar forcing may make more frequent ocean coupling and its computational complications unnecessary as improvements to the air–sea coupling in CCSM3 continue. A caveat here is that more frequent ocean coupling tends to reduce the long-term cooling trends typical of CCSM3 by heating already too warm ocean depths, but longer integrations are needed to determine robust features. A clear result is that the absence of diurnal solar forcing of the ocean has several undesirable consequences in CCSM3, including too large ENSO variability, much too cold Pacific equatorial SST, and no deep-cycle turbulence.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Gokhan Danabasoglu, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: gokhan@ucar.edu

Abstract

New features that may affect the behavior of the upper ocean in the Community Climate System Model version 3 (CCSM3) are described. In particular, the addition of an idealized diurnal cycle of solar forcing where the daily mean solar radiation received in each daily coupling interval is distributed over 12 daylight hours is evaluated. The motivation for this simple diurnal cycle is to improve the behavior of the upper ocean, relative to the constant forcing over each day of previous CCSM versions. Both 1- and 3-h coupling intervals are also considered as possible alternatives that explicitly resolve the diurnal cycle of solar forcing. The most prominent and robust effects of all these diurnal cycles are found in the tropical oceans, especially in the Pacific. Here, the mean equatorial sea surface temperature (SST) is warmed by as much as 1°C, in better agreement with observations, and the mean boundary layer depth is reduced. Simple rectification of the diurnal cycle explains about half of the shallowing, but less than 0.1°C of the warming. The atmospheric response to prescribed warm SST anomalies of about 1°C displays a very different heat flux signature. The implication, yet to be verified, is that large-scale air–sea coupling is a prime mechanism for amplifying the rectified, daily averaged SST signals seen by the atmosphere. Although the use of upper-layer temperature for SST in CCSM3 underestimates the diurnal cycle of SST, many of the essential characteristics of diurnal cycling within the equatorial ocean are reproduced, including boundary layer depth, currents, and the parameterized vertical heat and momentum fluxes associated with deep-cycle turbulence. The conclusion is that the implementation of an idealized diurnal cycle of solar forcing may make more frequent ocean coupling and its computational complications unnecessary as improvements to the air–sea coupling in CCSM3 continue. A caveat here is that more frequent ocean coupling tends to reduce the long-term cooling trends typical of CCSM3 by heating already too warm ocean depths, but longer integrations are needed to determine robust features. A clear result is that the absence of diurnal solar forcing of the ocean has several undesirable consequences in CCSM3, including too large ENSO variability, much too cold Pacific equatorial SST, and no deep-cycle turbulence.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Gokhan Danabasoglu, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: gokhan@ucar.edu

Save
  • Anderson, S. P., R. A. Weller, and R. B. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: Observations and 1D model results. J. Climate, 9 , 30563085.

    • Search Google Scholar
    • Export Citation
  • Bernie, D. J., S. J. Woolnough, J. M. Slingo, and E. Guilyardi, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18 , 11901202.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M., D. G. Vincent, and W. L. Wood, 1999: A flux parameterization including the effects of capillary waves and sea state. J. Atmos. Sci, 56 , 11231139.

    • Search Google Scholar
    • Export Citation
  • Bradley, E. F., 1968: A shearing stress meter for micro-meteorological studies. Quart. J. Roy. Meteor. Soc, 94 , 380387.

  • Briscoe, M. G., and R. A. Weller, 1984: Preliminary results from the Long Term Upper-Ocean Study (LOTUS). Dyn. Atmos. Oceans, 8 , 243265.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., X. Zeng, and S. Anderson, 2002: Uncertainties in sea surface turbulent flux algorithms and data sets. J. Geophys. Res, 107 .3141, doi:10.1029/2001JC000992.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., B. G. Kauffman, W. G. Large, and P. R. Gent, 1996: The NCAR CSM flux coupler. NCAR Tech. Note NCAR/TN-424+STR, 50 pp. [Available online at http://www.ccsm.ucar.edu/models/cpl/doc3/index.html.].

  • Bryan, K., 1969: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys, 4 , 347376.

  • Collins, W. D., and Coauthors, 2006a: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006b: The Community Climate System Model: CCSM3. J. Climate, 19 , 21222143.

  • Deser, C., and C. A. Smith, 1998: Diurnal and semidiurnal variations of the surface wind field over the tropical Pacific ocean. J. Climate, 11 , 17301748.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., W. G. Large, and F. O. Bryan, 1998: Surface ocean fluxes and water-mass transformation rates in the coupled NCAR climate system model. J. Climate, 11 , 14201441.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., and R. D. Smith, 1994: Implicit free-surface formulation of the Bryan-Cox-Semtner ocean model. J. Geophys. Res, 99 , 79918014.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996a: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res, 101 , 12951308.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996b: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res, 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr, 20 , 150155.

  • Gregg, M. C., H. Peters, J. C. Wesson, N. S. Oakey, and T. J. Shay, 1985: Intensive measurements of turbulence and shear in the equatorial undercurrent. Nature, 318 , 140144.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr, 28 , 831841.

  • Hack, J., J. Caron, S. Yeager, M. Holland, K. Oleson, A. Dai, J. Truesdale, and P. Rasch, 2006: Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model version 3: Mean features. J. Climate, 19 , 21992221.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Kauffman, B. G., R. Jacob, T. Craig, and W. G. Large, cited. 2004: The CCSM Coupler version 6.0: User's guide, source code reference, and scientific description. [Available online at http://www.ccsm.ucar.edu/models/ccsm3.0/cpl6/users_guide/users_guide.html.].

  • Kawai, Y., and H. Kawamura, 2002: Evaluation of the diurnal warming of sea surface temperature using satellite-derived marine meteorological data. J. Oceanogr, 58 , 805814.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17 , 36663682.

  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr, 11 , 324336.

  • Large, W. G., and P. R. Gent, 1999: Validation of vertical mixing in an equatorial ocean model using large eddy simulations and observations. J. Phys. Oceanogr, 29 , 449464.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp. [Available online at http://www.cgd.ucar.edu/oce/pubs/04pubs.html.].

  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19 , 23252346.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys, 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr, 27 , 24182447.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr, 31 , 518536.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. Montgomery, K. Polzin, L. St. Laurent, R. Schmitt, and J. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403 , 179182.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., T. Boyer, M. Conkright, D. Johnson, T. O'Brien, J. Antonov, C. Stephens, and R. Gelfeld, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Lien, R. C., D. R. Caldwell, M. C. Gregg, and J. N. Moum, 1995: Turbulence variability at the equator in the central Pacific at the beginning of the 1991–1993 El Niño. J. Geophys. Res, 100 , 68816898.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in COM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17 , 857876.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., G. Holloway, and A. E. Gargett, 1999: A global ocean model with double-diffusive mixing. J. Phys. Oceanogr, 29 , 11241142.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and D. R. Caldwell, 1985: Local influences on shear-flow turbulence in the equatorial ocean. Science, 230 , 315316.

  • Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16 , 13371351.

  • Rasch, P. J., M. J. Stevens, L. Ricciardulli, A. Dai, R. Wood, B. Boville, B. Eaton, and J. J. Hack, 2006: Characterization of tropical transient activity in the CAM3 atmospheric hydrologic cycle. J. Climate, 19 , 22432266.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Schudlich, R. R., and J. R. Price, 1992: Diurnal cycles of current, temperature and turbulent dissipation in a model of the equatorial upper ocean. J. Geophys. Res, 97 , 54095422.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., and C. A. Paulson, 1979: Mid-ocean observations of atmospheric radiation. Quart. J. Roy. Meteor. Soc, 105 , 487502.

  • Skyllingstad, E. D., W. D. Smyth, J. N. Moum, and H. Wijesekera, 1999: Upper-ocean turbulence during a westerly wind burst: A comparison of large-eddy simulation results and microstructure measurements. J. Phys. Oceanogr, 29 , 528.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1993: Some historical remarks on the use of nonlinear viscosities. Large Eddy Simulation of Complex Engineering and Geophysical Flows, B. Galperin and S. A. Orszag, Eds. Cambridge University Press, 3–36.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and P. R. Gent, 2002: Reference manual for the Parallel Ocean Program (POP), ocean component of the Community Climate System Model (CCSM2.0 and 3.0). Los Alamos National Laboratory Tech. Rep. LA-UR-02-2484, 75 pp. [Available online at http://www.ccsm.ucar.edu/models/ccsm3.0/pop.].

  • Smith, R. D., and J. C. McWilliams, 2003: Anisotropic horizontal viscosity for ocean models. Ocean Modell, 5 , 129156.

  • Smith, R. D., J. K. Dukowicz, and R. C. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60 , 3861.

  • Smith, R. D., S. Kortas, and B. Meltz, 1995: Curvilinear coordinates for global ocean models. Los Alamos National Laboratory Tech. Rep. LA-UR-95-1146, 38 pp.

  • Smith, T. M., and R. W. Reynolds, 1998: A high-resolution global sea surface temperature climatology for the 1961–90 base period. J. Climate, 11 , 33203323.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14 , 20792087.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and R. W. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic tracer release experiment. J. Phys. Oceanogr, 29 , 14041424.

    • Search Google Scholar
    • Export Citation
  • Stuart-Menteth, A. C., I. S. Robinson, and P. G. Challenor, 2003: A global study of diurnal warming using satellite-derived sea surface temperature. J. Geophys. Res, 108 .3155, doi:10.1029/2002JC001534.

    • Search Google Scholar
    • Export Citation
  • Wang, D., J. C. McWilliams, and W. G. Large, 1998: Large-eddy simulation of the diurnal cycle of deep equatorial turbulence. J. Phys. Oceanogr, 28 , 129148.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9 , 17121730.

    • Search Google Scholar
    • Export Citation
  • WGASF, 2000: Intercomparison and validation of ocean-atmosphere energy flux fields. Joint WCRP/SCOR Working Group on Air-Sea Fluxes, P. K. Taylor, Ed., WCRP-112, WMO Tech. Doc. 1036, 306 pp.

  • Yeager, S. G., J. J. Hack, C. A. Shields, and W. G. Large, 2006: The low-resolution CCSM3. J. Climate, 19 , 25452566.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1050 274 38
PDF Downloads 486 97 10