Extratropical Atmosphere–Ocean Variability in CCSM3

Michael Alexander Earth System Research Laboratory, NOAA–CIRES, Boulder, Colorado

Search for other papers by Michael Alexander in
Current site
Google Scholar
PubMed
Close
,
Jeffrey Yin National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jeffrey Yin in
Current site
Google Scholar
PubMed
Close
,
Grant Branstator National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Grant Branstator in
Current site
Google Scholar
PubMed
Close
,
Antonietta Capotondi Earth System Research Laboratory, NOAA–CIRES, Boulder, Colorado

Search for other papers by Antonietta Capotondi in
Current site
Google Scholar
PubMed
Close
,
Christophe Cassou Climate Modelling and Global Change Team, CERFACS-SUC, Toulouse, France

Search for other papers by Christophe Cassou in
Current site
Google Scholar
PubMed
Close
,
Richard Cullather Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Richard Cullather in
Current site
Google Scholar
PubMed
Close
,
Young-oh Kwon National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Young-oh Kwon in
Current site
Google Scholar
PubMed
Close
,
Joel Norris Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Joel Norris in
Current site
Google Scholar
PubMed
Close
,
James Scott Earth System Research Laboratory, NOAA–CIRES, Boulder, Colorado

Search for other papers by James Scott in
Current site
Google Scholar
PubMed
Close
, and
Ilana Wainer Department of Physical Oceanography, University of São Paulo, São Paulo, Brazil

Search for other papers by Ilana Wainer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extratropical atmosphere–ocean variability over the Northern Hemisphere of the Community Climate System Model version 3 (CCSM3) is examined and compared to observations. Results are presented for an extended control integration with a horizontal resolution of T85 (1.4°) for the atmosphere and land and ∼1° for the ocean and sea ice.

Several atmospheric phenomena are investigated including storms, clouds, and patterns of variability, and their relationship to both tropical and extratropical SST anomalies. The mean storm track, the leading modes of storm track variability, and the relationship of the latter to tropical and midlatitude sea surface temperature (SST) anomalies are fairly well simulated in CCSM3. The positive correlations between extratropical SST and low-cloud anomalies in summer are reproduced by the model, but there are clear biases in the relationship between clouds and the near-surface meridional wind. The model accurately represents the circulation anomalies associated with the jet stream waveguide, the Pacific–North American (PNA) pattern, and fluctuations associated with the Aleutian low, including how the latter two features are influenced by the El Niño–Southern Oscillation (ENSO). CCSM3 has a reasonable depiction of the Pacific decadal oscillation (PDO), but it is not strongly connected to tropical Pacific SSTs as found in nature. There are biases in the position of the North Atlantic Oscillation (NAO) and other Atlantic regimes, as the mean Icelandic low in CCSM3 is stronger and displaced southeastward relative to observations.

Extratropical ocean processes in CCSM3, including upper-ocean mixing, thermocline variability, and extratropical to tropical flow within the thermocline, also influence climate variability. As in observations, the model includes the “reemergence mechanism” where seasonal variability in mixed layer depth (MLD) allows SST anomalies to recur in consecutive winters without persisting through the intervening summer. Remote wind stress curl anomalies drive thermocline variability in the Kuroshio–Oyashio Extension region, which influences SST, surface heat flux anomalies, and the local wind field. The interior ocean pathways connecting the subtropics to the equator in both the Pacific and Atlantic are less pronounced in CCSM3 than in nature or in ocean-only simulations forced by observed atmospheric conditions, and the flow from the subtropical North Atlantic does not appear to reach the equator through either the western boundary or interior pathways.

++ The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Michael Alexander, Physical Science Division, Earth System Research Laboratory, NOAA–CIRES, Mail code R/PSD1, 325 Broadway, Boulder, CO 80305. Email: Michael.Alexander@noaa.gov

Abstract

Extratropical atmosphere–ocean variability over the Northern Hemisphere of the Community Climate System Model version 3 (CCSM3) is examined and compared to observations. Results are presented for an extended control integration with a horizontal resolution of T85 (1.4°) for the atmosphere and land and ∼1° for the ocean and sea ice.

Several atmospheric phenomena are investigated including storms, clouds, and patterns of variability, and their relationship to both tropical and extratropical SST anomalies. The mean storm track, the leading modes of storm track variability, and the relationship of the latter to tropical and midlatitude sea surface temperature (SST) anomalies are fairly well simulated in CCSM3. The positive correlations between extratropical SST and low-cloud anomalies in summer are reproduced by the model, but there are clear biases in the relationship between clouds and the near-surface meridional wind. The model accurately represents the circulation anomalies associated with the jet stream waveguide, the Pacific–North American (PNA) pattern, and fluctuations associated with the Aleutian low, including how the latter two features are influenced by the El Niño–Southern Oscillation (ENSO). CCSM3 has a reasonable depiction of the Pacific decadal oscillation (PDO), but it is not strongly connected to tropical Pacific SSTs as found in nature. There are biases in the position of the North Atlantic Oscillation (NAO) and other Atlantic regimes, as the mean Icelandic low in CCSM3 is stronger and displaced southeastward relative to observations.

Extratropical ocean processes in CCSM3, including upper-ocean mixing, thermocline variability, and extratropical to tropical flow within the thermocline, also influence climate variability. As in observations, the model includes the “reemergence mechanism” where seasonal variability in mixed layer depth (MLD) allows SST anomalies to recur in consecutive winters without persisting through the intervening summer. Remote wind stress curl anomalies drive thermocline variability in the Kuroshio–Oyashio Extension region, which influences SST, surface heat flux anomalies, and the local wind field. The interior ocean pathways connecting the subtropics to the equator in both the Pacific and Atlantic are less pronounced in CCSM3 than in nature or in ocean-only simulations forced by observed atmospheric conditions, and the flow from the subtropical North Atlantic does not appear to reach the equator through either the western boundary or interior pathways.

++ The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Michael Alexander, Physical Science Division, Earth System Research Laboratory, NOAA–CIRES, Mail code R/PSD1, 325 Broadway, Boulder, CO 80305. Email: Michael.Alexander@noaa.gov

Save
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr, 25 , 122137.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12 , 24192431.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., N-C. Lau, and J. D. Scott, 2004: Broadening the atmospheric bridge paradigm: ENSO teleconnections to the North Pacific in summer and to the tropical west Pacific-Indian Oceans over the seasonal cycle. Earth Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 85–104.

  • Andelberg, M. R., 1973: Cluster Analysis for Applications. Academic Press, 359 pp.

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev, 115 , 10831126.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci, 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Benson, A. J., and A. W. Trites, 2002: Ecological effects of regime shifts in the Bering Sea and eastern North Pacific Ocean. Fish Fish, 3 , 95113.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci, 34 , 10401053.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15 , 18931910.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model, Version 3. NCAR Tech. Note NCAR/TN-463+STR, 70 pp.

  • Cassou, C., and L. Terray, 2001: Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European sector: A study with the ARPEGE model. J. Climate, 14 , 42664291.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, J. W. Hurrell, and C. Deser, 2004: North Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. J. Climate, 17 , 10551068.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr, 22 , 859881.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15 , 21632183.

  • Chang, P., B. S. Giese, H. F. Seidel, and F. Wang, 2001: Decadal change in the South Tropical Pacific in a global assimilation analysis. Geophys. Res. Lett, 28 , 34613464.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., P. D. Sardeshmukh, and C. Penland, 2001: Changes of subseasonal variability associated with El Niño. J. Climate, 14 , 33563374.

    • Search Google Scholar
    • Export Citation
  • Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor, 2003: An overview of results from the Coupled Model Intercomparison Project (CMIP). Global Planet. Change, 37 , 103133.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19 , 23472365.

    • Search Google Scholar
    • Export Citation
  • de Cöetlogon, G., and C. Frankignoul, 2003: The persistence of winter sea surface temperature in the North Atlantic. J. Climate, 16 , 13641377.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific sea surface temperature variations. J. Climate, 8 , 16771680.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current extension from the 1970s to the 1980s. J. Climate, 12 , 16971706.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16 , 5772.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the Tropics and the North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19 , 24512481.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2002: Linearity in ENSO's atmospheric response. J. Climate, 15 , 24462461.

  • Frankignoul, C., and E. Kestenare, 2002: The surface heat flux feedback. Part I: Estimates from observations in the Atlantic and the North Pacific. Climate Dyn, 19 , 633647.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Muller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr, 27 , 15331546.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., T. P. Barnett, R. Wilde, M. Ponater, and S. Schubert, 1994: Low-frequency variability in the winter circulation over the Northern Hemisphere. J. Climate, 7 , 14161442.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on the exchanges between the Tropics and extratropics. Science, 240 , 12931302.

    • Search Google Scholar
    • Export Citation
  • Guylev, S. K., T. Jung, and E. Ruprecht, 2002: Climatology and interannual variability in the intensity of synoptic-scale processes in the North Atlantic from the NCEP–NCAR reanalysis data. J. Climate, 15 , 809828.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. M. Caron, G. Danabasoglu, K. W. Oleson, C. M. Bitz, and J. E. Truesdale, 2006: CCSM–CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Climate, 19 , 22672289.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 1999: Extended edited synoptic cloud reports from ships and land stations over the globe, 1952–1996. Tech. Note NDP026C, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, 71 pp. [Available online at http://cdiac.esd.ornl.gov/epubs/ndp/ndp026c/ndp026c.html.].

  • Hanawa, K., and S. M. Sugimoto, 2004: “Reemergence” areas of winter sea surface temperature anomalies in the world's oceans. Geophys. Res. Lett, 31 .L10303, doi:10.1029/2004GL019904.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., and E. K. M. Chang, 2003: Storm track variation as seen in radiosonde observations and reanalysis data. J. Climate, 16 , 480495.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., P. de Vries, and Y. Friocourt, 2003: Sources of the equatorial undercurrent in the Atlantic in a high-resolution ocean model. J. Phys. Oceanogr, 33 , 677693.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10 , 17691786.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and T. Xu, 2001: Robustness of the nonlinear climate response to ENSO's extreme phases. J. Climate, 14 , 12771293.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, A. Phillips, J. Caron, and J. Yin, 2006: The dynamical simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21622183.

    • Search Google Scholar
    • Export Citation
  • Iwasaka, N., and J. M. Wallace, 1995: Large scale air sea interaction in the Northern Hemisphere from a view point of variations of surface heat flux by SVD analysis. J. Meteor. Soc. Japan, 73 , 781794.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997: A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system. J. Climate, 10 , 18211835.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and M. J. McPhaden, 1999: Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean. J. Phys. Oceanogr, 29 , 30733089.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kaplan, A., Y. Kushnir, and M. A. Cane, 2000: Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992. J. Climate, 13 , 29873002.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for the decadal variation of ENSO. Geophys. Res. Lett, 26 , 743747.

  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19 , 23252346.

  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual mean climatology. J. Phys. Oceanogr, 27 , 24182447.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9 , 24072423.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Lin, H., and J. Derome, 2004: Nonlinearity of the extratropical response to tropical forcing. J. Climate, 17 , 25972608.

  • Luo, J-J., and T. Yamagata, 2001: Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J. Geophys. Res, 106 , 2221122227.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc, 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • May, W., and L. Bengtsson, 1998: The signature of ENSO in the Northern Hemisphere midlatitude seasonal mean flow and high-frequency intraseasonal variability. Meteor. Atmos. Phys, 69 , 81100.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • Michelangeli, P., R. Vautard, and B. Legras, 1995: Weather regime recurrence and quasi-stationarity. J. Atmos. Sci, 52 , 12371256.

  • Miller, A. J., and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Progress in Oceanography, Vol. 27, Pergamon, 257–260.

  • Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994: Interdecadal variability of the Pacific Ocean: Model response to observed heat flux and wind stress anomalies. Climate Dyn, 9 , 287302.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, and W. B. White, 1998: A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11 , 31123127.

    • Search Google Scholar
    • Export Citation
  • Molinari, R., S. Bauer, D. Snowden, G. Johnson, B. Bourles, Y. Gouriou, and H. Mercier, 2003: A comparison of kinematic evidence for tropical cells in the Atlantic and Pacific Oceans. Interhemispheric Water Exchange in the Atlantic Ocean, G. Goni and P. Malanotte-Rizzoli, Eds. Elsevier Oceanographic Series, Elsevier, 269–286.

    • Search Google Scholar
    • Export Citation
  • Monterey, G. I., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA NESDIS Atlas 14, 5 pp.

  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345.

  • Namias, J., and R. M. Born, 1970: Temporal coherence in North Pacific sea-surface temperature patterns. J. Geophys. Res, 75 , 59525955.

    • Search Google Scholar
    • Export Citation
  • Namias, J., and R. M. Born, 1974: Further studies of temporal coherence in North Pacific sea surface temperatures. J. Geophys. Res, 79 , 797798.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev, 121 , 21532176.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16 , 38533857.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11 , 383403.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7 , 19151925.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and S. A. Klein, 2000: Low cloud type over the ocean from surface observations. Part III: Relationship to vertical motion and the regional surface synoptic environment. J. Climate, 13 , 245256.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. P. Weaver, 2001: Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. J. Climate, 14 , 25402550.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18 , 48624878.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of low clouds in summertime atmosphere–ocean interactions over the North Pacific. J. Climate, 11 , 24822490.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 174 pp.

  • Park, S., C. Deser, and M. A. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18 , 45824599.

    • Search Google Scholar
    • Export Citation
  • Powell, M. J. D., 1964: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J, 7 , 155162.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and M. Ghil, 1999: Large-scale weather regimes and local climate over the western United States. J. Climate, 12 , 17961813.

    • Search Google Scholar
    • Export Citation
  • Roden, G. I., 1998: Upper ocean thermohaline, oxygen, nutrient and flow structure near the date line of the summer of 1993. J. Geophys. Res, 103 , C6. 1291912939.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13 , 42684286.

  • Schneider, N., and A. J. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14 , 39974002.

  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18 , 43554373.

  • Seager, R., Y. Kushnir, M. Visbeck, N. Naik, J. Miller, G. Krahmann, and H. Cullen, 2000: Causes of Atlantic Ocean climate variability between 1958 and 1998. J. Climate, 13 , 28452862.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., A. Hannachi, and A. O'Neill, 2004: On the existence of multiple climate regimes. Quart. J. Roy. Meteor. Soc, 130 , 583605.

    • Search Google Scholar
    • Export Citation
  • Stevens, M., W. Collins, J. Hack, and P. Rasch, cited. 2005: CCSM3 coupled model development runs. [Available online at http://www.cgd.ucar.edu/cms/stevens/ccsm3/ccsm3.T85.html.].

  • Straus, D. M., and J. Shukla, 1997: Variations of midlatitude transient dynamics associated with ENSO. J. Atmos. Sci, 54 , 777790.

  • Straus, D. M., and J. Shukla, 2002: Does ENSO Force the PNA? J. Climate, 15 , 23402358.

  • Sturges, W., and B. G. Hong, 1995: Wind forcing of the Atlantic thermocline along 32°N at low frequencies. J. Phys. Oceanogr, 25 , 17061715.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett, 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Timlin, M., M. A. Alexander, and C. Deser, 2002: On the reemergence of North Atlantic SST anomalies. J. Climate, 15 , 27072712.

  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc, 71 , 988993.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn, 9 , 303319.

  • Tselioudis, G., and C. Jakob, 2002: Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution. J. Geophys. Res, 107 .4781, doi:10.1029/2002JD002259.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. Gutzler, 1981: Teleconnections in geopotential fields during the Northern Hemisphere winter. Mon. Wea. Rev, 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: On the persistence of decadal SST anomalies in the North Atlantic. J. Climate, 13 , 30173028.

  • Weare, B. C., 1994: Interrelationships between cloud properties and sea surface temperatures on seasonal and interannual time scales. J. Climate, 7 , 248260.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci, 54 , 168192.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., and D. S. Battisti, 2004: Why do baroclinic waves tilt poleward with height? J. Atmos. Sci, 61 , 14541460.

  • Zhang, D., M. J. McPhaden, and W. E. Johns, 2003: Observational evidence for flow between the subtropical and tropical Atlantic: The Atlantic subtropical cells. J. Phys. Oceanogr, 33 , 17831797.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., and C. Frankignoul, 1997: Modes of North Atlantic decadal variability in the ECHAM1/LSG coupled ocean–atmosphere general circulation model. J. Climate, 10 , 183200.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 199 60 7
PDF Downloads 112 50 5