Climate Change Projections for the Twenty-First Century and Climate Change Commitment in the CCSM3

Gerald A. Meehl National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Gerald A. Meehl in
Current site
Google Scholar
PubMed
Close
,
Warren M. Washington National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Warren M. Washington in
Current site
Google Scholar
PubMed
Close
,
Benjamin D. Santer Program for Climate Model Diagnosis and Intercomparison, Livermore, California

Search for other papers by Benjamin D. Santer in
Current site
Google Scholar
PubMed
Close
,
William D. Collins National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by William D. Collins in
Current site
Google Scholar
PubMed
Close
,
Julie M. Arblaster National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Julie M. Arblaster in
Current site
Google Scholar
PubMed
Close
,
Aixue Hu National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Aixue Hu in
Current site
Google Scholar
PubMed
Close
,
David M. Lawrence National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by David M. Lawrence in
Current site
Google Scholar
PubMed
Close
,
Haiyan Teng National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Haiyan Teng in
Current site
Google Scholar
PubMed
Close
,
Lawrence E. Buja National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Lawrence E. Buja in
Current site
Google Scholar
PubMed
Close
, and
Warren G. Strand National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Warren G. Strand in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate change scenario simulations with the Community Climate System Model version 3 (CCSM3), a global coupled climate model, show that if concentrations of all greenhouse gases (GHGs) could have been stabilized at the year 2000, the climate system would already be committed to 0.4°C more warming by the end of the twenty-first century. Committed sea level rise by 2100 is about an order of magnitude more, percentage-wise, compared to sea level rise simulated in the twentieth century. This increase in the model is produced only by thermal expansion of seawater, and does not take into account melt from ice sheets and glaciers, which could at least double that number. Several tenths of a degree of additional warming occurs in the model for the next 200 yr in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1 and A1B scenarios after stabilization in the year 2100, but with twice as much sea level rise after 100 yr, and doubling yet again in the next 100 yr to 2300. At the end of the twenty-first century, the warming in the tropical Pacific for the A2, A1B, and B1 scenarios resembles an El Niño–like response, likely due to cloud feedbacks in the model as shown in an earlier version. Greatest warming occurs at high northern latitudes and over continents. The monsoon regimes intensify somewhat in the future warmer climate, with decreases of sea level pressure at high latitudes and increases in the subtropics and parts of the midlatitudes. There is a weak summer midlatitude soil moisture drying in this model as documented in previous models. Sea ice distributions in both hemispheres are somewhat overextensive, but with about the right ice thickness at the end of the twentieth century. Future decreases in sea ice with global warming are proportional to the temperature response from the forcing scenarios, with the high forcing scenario, A2, producing an ice-free Arctic in summer by the year 2100.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Gerald Meehl, NCAR, P.O. Box 3000, Boulder, CO 80307. Email: meehl@ncar.ucar.edu

Abstract

Climate change scenario simulations with the Community Climate System Model version 3 (CCSM3), a global coupled climate model, show that if concentrations of all greenhouse gases (GHGs) could have been stabilized at the year 2000, the climate system would already be committed to 0.4°C more warming by the end of the twenty-first century. Committed sea level rise by 2100 is about an order of magnitude more, percentage-wise, compared to sea level rise simulated in the twentieth century. This increase in the model is produced only by thermal expansion of seawater, and does not take into account melt from ice sheets and glaciers, which could at least double that number. Several tenths of a degree of additional warming occurs in the model for the next 200 yr in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1 and A1B scenarios after stabilization in the year 2100, but with twice as much sea level rise after 100 yr, and doubling yet again in the next 100 yr to 2300. At the end of the twenty-first century, the warming in the tropical Pacific for the A2, A1B, and B1 scenarios resembles an El Niño–like response, likely due to cloud feedbacks in the model as shown in an earlier version. Greatest warming occurs at high northern latitudes and over continents. The monsoon regimes intensify somewhat in the future warmer climate, with decreases of sea level pressure at high latitudes and increases in the subtropics and parts of the midlatitudes. There is a weak summer midlatitude soil moisture drying in this model as documented in previous models. Sea ice distributions in both hemispheres are somewhat overextensive, but with about the right ice thickness at the end of the twentieth century. Future decreases in sea ice with global warming are proportional to the temperature response from the forcing scenarios, with the high forcing scenario, A2, producing an ice-free Arctic in summer by the year 2100.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Gerald Meehl, NCAR, P.O. Box 3000, Boulder, CO 80307. Email: meehl@ncar.ucar.edu

Save
  • Ammann, C. M., G. A. Meehl, W. M. Washington, and C. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett, 30 .1657, doi:10.1029/2003GL016875.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to Southern Hemisphere Annular Mode trends. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., D. W. Pierce, K. M. AchutaRao, P. J. Gleckler, B. D. Santer, J. M. Gregory, and W. M. Washington, 2005: Penetration of human-induced warming into the world's oceans. Science, doi:10.1126/science.1112418.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. W. Dixon, T. L. Delworth, T. R. Knutson, R. J. Stouffer, and F. Zeng, 2003: Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. J. Geophys. Res, 108 .4798, doi:10.1029/2003JD003812.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., G. Danabasoglu, N. Nakashiki, Y. Yoshida, D-H. Kim, J. Tsutsui, and S. C. Doney, 2006: Response of North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J. Climate, 19 , 23822397.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., N. J. White, R. Coleman, K. Lambeck, and J. X. Mitrovica, 2004: Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Climate, 17 , 26092625.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmospheric Model: CAM3. J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton et al., Eds. Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001: Climates of the twentieth and twenty-first centuries simulated by the NCAR Climate System Model. J. Climate, 14 , 485519.

    • Search Google Scholar
    • Export Citation
  • Dai, A., A. Hu, G. A. Meehl, W. M. Washington, and W. G. Strand, 2005: Atlantic thermohaline circulation in a coupled model: Unforced variations versus forced changes. J. Climate, 18 , 32703293.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289 , 20682074.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., and Coauthors, 2001a: Observed climate variability and change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds. Cambridge University Press, 99–181.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., and Coauthors, 2001b: Global temperature change and its uncertainties since 1861. Geophys. Res. Lett, 28 , 26212624.

  • Foukal, P., G. North, and T. Wigley, 2004: A stellar view on solar variations and climate. Science, 306 , 6869.

  • Gent, P. R., and G. Danabasoglu, 2004: Heat uptake and the thermohaline circulation in the Community Climate System Model, version 2. J. Climate, 17 , 40584069.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., F. O. Bryan, G. Danabasoglu, K. Lindsay, D. Tsumune, M. W. Hecht, and S. C. Doney, 2006: Ocean chlorofluorocarbon and heat uptake during the 20th century in the CCSM3. J. Climate, 19 , 23662381.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., H. F. Graf, and T. J. Osborn, 2003: Climate change and the NAO. The North Atlantic Oscillation,Geophysical Monogr., No. 134, Amer. Geophys. Union, 193–209.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., J. F. B. Mitchell, and A. J. Brady, 1997: Summer drought in northern midlatitudes in a time-dependent CO2 climate experiment. J. Climate, 10 , 662686.

    • Search Google Scholar
    • Export Citation
  • Hoyt, D. V., and K. H. Schatten, 1993: A discussion of plausible solar irradiance variations, 1700–1992. J. Geophys. Res, 98 , 1889518906.

    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, W. M. Washington, and A. Dai, 2004: Response of the Atlantic thermohaline circulation to increased atmospheric CO2 in a coupled model. J. Climate, 17 , 42674279.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17 , 36663682.

  • Kiehl, J. T., T. L. Schneider, R. W. Portman, and S. Solomon, 1999: Climate forcing due to tropospheric and stratospheric ozone. J. Geophys. Res, 104 , 3123931254.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., C. A. Shields, J. J. Hack, and W. Collins, 2006: The Climate Sensitivity of the Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 25842596.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J-F., P. Hess, L. Emmons, L. Buja, W. Washington, and C. Granier, 2005: Tropospheric ozone evolution between 1890 and 1990. J. Geophys. Res, 110 .D08304, doi:10.1029/2004JD005537.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and A. G. Slater, 2005: A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett, 32 .L24401, doi:10.1029/2005GL025080.

    • Search Google Scholar
    • Export Citation
  • Lean, J., J. Beer, and R. Bradley, 1995: Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett, 22 , 655658.

    • Search Google Scholar
    • Export Citation
  • Lean, J. L., Y-M. Wang, and N. R. Sheeley Jr., 2002: The effect of increasing solar activity on the sun's total open magnetic flux during multiple cycles: Implications for solar forcing of climate. Geophys. Res. Lett, 29 .2002, doi:10.1029/2002GL015880.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1953–2003. Geophys. Res. Lett, 32 .L02604, doi:10.1029/2004GL021592.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1999: The role of thermohaline circulation in climate. Tellus, 51A-B , 91109.

  • Meehl, G. A., and W. M. Washington, 1996: El Nino-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382 , 5660.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. D. Collins, B. Boville, J. T. Kiehl, T. M. L. Wigley, and J. M. Arblaster, 2000: Response of the NCAR Climate System Model to increased CO2 and the role of physical processes. J. Climate, 13 , 18791898.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, C. Ammann, J. M. Arblaster, T. M. L. Wigley, and C. Tebaldi, 2004a: Combinations of natural and anthropogenic forcings and 20th century climate. J. Climate, 17 , 37213727.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, M. Latif, B. McAvaney, and R. J. Stouffer, 2004b: Soliciting participation in the climate model analyses leading to the IPCC Fourth Assessment Report. Eos, Trans. Amer. Geophys. Union, 29 , 274.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, J. M. Arblaster, and A. Hu, 2004c: Factors affecting climate sensitivity in global coupled models. J. Climate, 17 , 15841596.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, B. McAvaney, M. Latif, and R. J. Stouffer, 2005a: Overview of the Coupled Model Intercomparison Project. Bull. Amer. Meteor. Soc, 86 , 8993.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, W. D. Collins, J. M. Arblaster, A. Hu, L. E. Buja, W. G. Strand, and H. Teng, 2005b: How much more global warming and sea level rise? Science, 307 , 17691772.

    • Search Google Scholar
    • Export Citation
  • Miller, L., and B. C. Douglas, 2004: Mass and volume contributions to twentieth-century global sea level rise. Nature, 428 , 406409.

  • Mitchell, J. F. B., T. C. Johns, W. J. Ingram, and J. A. Lowe, 2000: The effect of stabilising atmospheric carbon dioxide concentrations on global and regional climate change. Geophys. Res. Lett, 27 , 29772980.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, 1999: Arctic sea ice extents, areas, and trends, 1978–1996. J. Geophys. Res, 104 , 2083720856.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1988: The greenhouse theory of climate change: A test by an inadvertent global experiment. Science, 240 , 293299.

  • Raper, S. C. B., J. M. Gregory, and R. J. Stouffer, 2002: The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Climate, 15 , 124130.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res, 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Selten, F. M., G. W. Branstator, H. A. Dijkstra, and M. Kliphuis, 2004: Tropical origins for recent and future Northern Hemisphere climate change. Geophys. Res. Lett, 31 .L21205, doi:10.1029/2004GL020739.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., J. S. Pal, E. A. B. Eltahir, and C. Schär, 2002: Summer dryness in a warmer climate: A process study with a regional climate model. Climate Dyn, 20 , 6985.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., H. Pitcher, and T. M. L. Wigley, 2001: Global and regional anthropogenic sulfur dioxide emissions. Global Planet. Change, 29 , 99119.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., R. Andres, E. Conception, and J. Lurz, 2004: Sulfur dioxide emissions: 1850–2000. Tech. Rep. PNNL-14537, JGCRI, 16 pp.

  • Smith, S. J., H. Pitcher, and T. M. L. Wigley, 2005: Future sulfur dioxide emissions. Climatic Change, 73 , 267318.

  • Stouffer, R. J., 2004: Time scales of climate response. J. Climate, 17 , 209217.

  • Stouffer, R. J., and S. Manabe, 1999: Response of a coupled ocean–atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase. J. Climate, 12 , 22242237.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19 , 13651387.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., S. F. B. Tett, G. S. Jones, M-R. Allen, J. E. B. Mitchell, and G. J. Jenkins, 2000: External control of 20th century temperature by natural and anthropogenic forcings. Science, 290 , 21332137.

    • Search Google Scholar
    • Export Citation
  • Teng, H., W. M. Washington, G. A. Meehl, L. A. Buja, and G. W. Strand, 2006a: 21st century arctic climate change in the CCSM3 IPCC scenario simulations. Climate Dyn, doi;10.1007/S00382-005-0099-z.

    • Search Google Scholar
    • Export Citation
  • Teng, H., L. E. Buja, and G. A. Meehl, 2006b: 20th-century climate change commitment from 12 general circulation models. Geophys. Res. Lett, in press.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 1995: The mechanisms of summer dryness induced by greenhouse warming. J. Climate, 8 , 30963108.

  • Wetherald, R. T., and S. Manabe, 2002: Simulation of hydrologic changes associated with global warming. J. Geophys. Res, 107 .4379, doi:10.1029/2001JD001195.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., R. J. Stouffer, and K. W. Dixon, 2001: Committed warming and its implications for climate change. Geophys. Res. Lett, 28 , 15351538.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., 2005: The climate change commitment. Science, 307 , 17661769.

  • Wigley, T. M. L., and S. Raper, 2003: Future changes in global-mean temperature and sea level. Climate and Sea Level Change: Observations, Projections and Implications R. A. Warrick, E. M. Barrow, and T. M. L. Wigley, Eds. Cambridge University Press, 111–133.

    • Search Google Scholar
    • Export Citation
  • Wingley, T. M. L., S. J. Smith, and M. J. Prather, 2002: Radiative forcing due to reactive gas emissions. J. Climate, 15 , 26902696.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett, 32 .L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Yoshida, Y., K. Maruyama, J. Tsutsui, N. Nakashiki, F. O. Bryan, M. Blackmon, B. A. Boville, and R. D. Smith, 2005: Multi-century ensemble global warming projections using the Community Climate System Model (CCSM3). J. Earth Sim, 3 , 210.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2973 738 227
PDF Downloads 1519 184 49