Climate Sensitivity of Moderate- and Low-Resolution Versions of CCSM3 to Preindustrial Forcings

Bette L. Otto-Bliesner National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Bette L. Otto-Bliesner in
Current site
Google Scholar
PubMed
Close
,
Robert Tomas National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Robert Tomas in
Current site
Google Scholar
PubMed
Close
,
Esther C. Brady National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Esther C. Brady in
Current site
Google Scholar
PubMed
Close
,
Caspar Ammann National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Caspar Ammann in
Current site
Google Scholar
PubMed
Close
,
Zav Kothavala National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Zav Kothavala in
Current site
Google Scholar
PubMed
Close
, and
Gabriel Clauzet Department of Physical Oceanography, University of São Paulo, São Paulo, Brazil

Search for other papers by Gabriel Clauzet in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Preindustrial (PI) simulations of the Community Climate System Model version 3 (CCSM3) at two resolutions, a moderate and a low resolution, are described and compared to the standard controls for present-day (PD) simulations. Because of computational efficiency, the moderate- and low-resolution versions of CCSM3 may be appropriate for climate change studies requiring simulations of the order of hundreds to thousands of years. The PI simulations provide the basis for comparison for proxy records that represent average late Holocene conditions.

When forced with PI trace gases, aerosols, and solar irradiance estimates, both resolutions have a global cooling of 1.2°–1.3°C, increased sea ice in both hemispheres, and less precipitation near the equator and at midlatitudes as compared to simulations using PD forcing. The response to PI forcings differs in the two resolutions for North Atlantic meridional overturning circulation (MOC), the Antarctic Circumpolar Current (ACC), and ENSO. The moderate-resolution CCSM3 has enhanced ACC, North Atlantic MOC, and tropical Pacific ENSO variability for PI forcings as compared to PD. The low-resolution CCSM3 with more extensive sea ice and colder climate at high northern latitudes in the PD simulation shows less sensitivity of the North Atlantic MOC to PI forcing. ENSO variability and the strength of the ACC do not increase with PI forcing in the low-resolution CCSM3.

Corresponding author address: Dr. Bette Otto-Bliesner, CCR/CGD, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: ottobli@ucar.edu

Abstract

Preindustrial (PI) simulations of the Community Climate System Model version 3 (CCSM3) at two resolutions, a moderate and a low resolution, are described and compared to the standard controls for present-day (PD) simulations. Because of computational efficiency, the moderate- and low-resolution versions of CCSM3 may be appropriate for climate change studies requiring simulations of the order of hundreds to thousands of years. The PI simulations provide the basis for comparison for proxy records that represent average late Holocene conditions.

When forced with PI trace gases, aerosols, and solar irradiance estimates, both resolutions have a global cooling of 1.2°–1.3°C, increased sea ice in both hemispheres, and less precipitation near the equator and at midlatitudes as compared to simulations using PD forcing. The response to PI forcings differs in the two resolutions for North Atlantic meridional overturning circulation (MOC), the Antarctic Circumpolar Current (ACC), and ENSO. The moderate-resolution CCSM3 has enhanced ACC, North Atlantic MOC, and tropical Pacific ENSO variability for PI forcings as compared to PD. The low-resolution CCSM3 with more extensive sea ice and colder climate at high northern latitudes in the PD simulation shows less sensitivity of the North Atlantic MOC to PI forcing. ENSO variability and the strength of the ACC do not increase with PI forcing in the low-resolution CCSM3.

Corresponding author address: Dr. Bette Otto-Bliesner, CCR/CGD, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: ottobli@ucar.edu

Save
  • Barth, M. C., P. J. Rasch, J. T. Kiehl, C. M. Benkovitz, and S. E. Schwartz, 2000: Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features and sensitivity to aqueous chemistry. J. Geophys. Res, 105 , 13871415.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model Version 3. NCAR Tech. Note NCAR/TN-463+STR, 70 pp.

  • Bryan, F. O., G. Danabasoglu, N. Nakashiki, Y. Yoshida, D-H. Kim, J. Tsutsui, and S. C. Doney, 2006: Response of North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J. Climate, 19 , 23822397.

    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern oscillation and tropical Pacific climate during the last millennium. Nature, 424 , 271276.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. D. D'Arrigo, and M. E. Mann, 2002: A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since a.d. 1400. J. Climate, 15 , 17541764.

    • Search Google Scholar
    • Export Citation
  • Crutzen, P. I., 2002: Geology of mankind. Nature, 415 , 23.

  • Deser, C., M. S. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16 , 5772.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19 , 24512481.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., K. W. Oleson, G. B. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z-L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 , 23022324.

    • Search Google Scholar
    • Export Citation
  • Esper, J., E. R. Cook, and F. H. Schweingruber, 2002: Low-frequency signals in long tree-line chronologies for reconstructing past temperature variability. Science, 295 , 22502253.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., W. G. Large, and F. O. Bryan, 2001: What sets the mean transport through the Drake Passage? J. Geophys. Res, 106 , 26932712.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., F. O. Bryan, G. Danabasoglu, K. Lindsay, D. Tsumune, M. W. Hecht, and S. C. Doney, 2006: Ocean chlorofluorocarbon and heat uptake during the twentieth century in the CCSM3. J. Climate, 19 , 23662381.

    • Search Google Scholar
    • Export Citation
  • Gong, D-Y., and S-W. Wang, 1998: Antarctic oscillation: Concept and applications. Chinese Sci. Bull, 43 , 734738.

  • Hack, J. J., J. M. Caron, G. Danabasoglu, K. W. Oleson, C. M. Bitz, and J. E. Truesdale, 2006a: CCSM–CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Climate, 19 , 22672289.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. M. Caron, S. G. Yeager, K. W. Oleson, M. M. Holland, J. E. Truesdale, and P. J. Rasch, 2006b: Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model version 3 (CAM3): Mean features. J. Climate, 19 , 21992221.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19 , 23982414.

    • Search Google Scholar
    • Export Citation
  • Huang, S., H. N. Pollack, and P-Y. Shen, 2000: Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature, 403 , 756758.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, A. Phillips, J. M. Caron, and J. Yin, 2006: The dynamical simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21622183.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and M. E. Mann, 2004: Climate over the past millennia. Rev. Geophys, 42 .RG2002, doi:10.1029/2003RG000143.

  • Kessler, W. S., 1990: Observations of long Rossby waves in the northern tropical Pacific. J. Geophys. Res, 95 , 51835217.

  • Kiehl, J. T., C. A. Shields, J. J. Hack, and W. D. Collins, 2006: The climate sensitivity of the Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 25842596.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J-F., P. Hess, L. Emmons, L. Buja, W. M. Washington, and C. Granier, 2005: Tropospheric ozone evolution between 1890 and 1990. J. Geophys. Res, 110 .D08304, doi:10.1029/2004JD005537.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19 , 23252346.

  • Levitus, S., T. Boyer, M. Conkright, D. Johnson, T. O'Brian, J. Antonov, C. Stephens, and R. Gelfeld, 1998: Introduction. Vol. I, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Otto-Bliesner, B. L., and E. C. Brady, 2001: Tropical Pacific variability in the NCAR Climate System Model. J. Climate, 14 , 35873607.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., E. C. Brady, G. Clauzet, R. Tomas, S. Levis, and Z. Kothavala, 2006: Last Glacial Maximum and Holocene climate in CCSM3. J. Climate, 19 , 25262544.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds. Cambridge University Press, 349–416.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., M. C. Barth, J. T. Kiehl, S. E. Schwartz, and C. M. Benkovitz, 2000: A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, Version 3. J. Geophys. Res, 105 , 13671385.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res, 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., H. Pitcher, and T. M. L. Wigley, 2001: Global and regional anthropogenic sulfur dioxide emissions. Global Biogeochem. Cycles, 29 , 99119.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett, 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Urban, F. E., J. E. Cole, and J. T. Overpeck, 2000: Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature, 407 , 989993.

    • Search Google Scholar
    • Export Citation
  • Wang, W-C., X-Z. Liang, M. P. Dudek, D. Pollard, and S. L. Thompson, 1995: Atmospheric ozone as a climate gas. Atmos. Res, 37 , 247256.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., and R. Peterson, 1985: Volume transport of the Antarctic Circumpolar Current from bottom water measurements. J. Phys. Oceanogr, 15 , 810816.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19 , 25452566.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 450 262 136
PDF Downloads 153 49 3