Simulation of the Global Hydrological Cycle in the CCSM Community Atmosphere Model Version 3 (CAM3): Mean Features

James J. Hack National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by James J. Hack in
Current site
Google Scholar
PubMed
Close
,
Julie M. Caron National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Julie M. Caron in
Current site
Google Scholar
PubMed
Close
,
Stephen G. Yeager National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stephen G. Yeager in
Current site
Google Scholar
PubMed
Close
,
Keith W. Oleson National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Keith W. Oleson in
Current site
Google Scholar
PubMed
Close
,
Marika M. Holland National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Marika M. Holland in
Current site
Google Scholar
PubMed
Close
,
John E. Truesdale National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by John E. Truesdale in
Current site
Google Scholar
PubMed
Close
, and
Philip J. Rasch National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Philip J. Rasch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The seasonal and annual climatological behavior of selected components of the hydrological cycle are presented from coupled and uncoupled configurations of the atmospheric component of the Community Climate System Model (CCSM) Community Atmosphere Model version 3 (CAM3). The formulations of processes that play a role in the hydrological cycle are significantly more complex when compared with earlier versions of the atmospheric model. Major features of the simulated hydrological cycle are compared against available observational data, and the strengths and weaknesses are discussed in the context of specified sea surface temperature and fully coupled model simulations.

The magnitude of the CAM3 hydrological cycle is weaker than in earlier versions of the model, and is more consistent with observational estimates. Major features of the exchange of water with the surface, and the vertically integrated storage of water in the atmosphere, are generally well captured on seasonal and longer time scales. The water cycle response to ENSO events is also very realistic. The simulation, however, continues to exhibit a number of long-standing biases, such as a tendency to produce double ITCZ-like structures in the deep Tropics, and to overestimate precipitation rates poleward of the extratropical storm tracks. The lower-tropospheric dry bias, associated with the parameterized treatment of convection, also remains a simulation deficiency. Several of these biases are exacerbated when the atmosphere is coupled to fully interactive surface models, although the larger-scale behavior of the hydrological cycle remains nearly identical to simulations with prescribed distributions of sea surface temperature and sea ice.

Corresponding author address: Dr. James J. Hack, NCAR, P.O. Box 3000, Boulder, CO 80307. Email: jhack@ncar.ucar.edu

Abstract

The seasonal and annual climatological behavior of selected components of the hydrological cycle are presented from coupled and uncoupled configurations of the atmospheric component of the Community Climate System Model (CCSM) Community Atmosphere Model version 3 (CAM3). The formulations of processes that play a role in the hydrological cycle are significantly more complex when compared with earlier versions of the atmospheric model. Major features of the simulated hydrological cycle are compared against available observational data, and the strengths and weaknesses are discussed in the context of specified sea surface temperature and fully coupled model simulations.

The magnitude of the CAM3 hydrological cycle is weaker than in earlier versions of the model, and is more consistent with observational estimates. Major features of the exchange of water with the surface, and the vertically integrated storage of water in the atmosphere, are generally well captured on seasonal and longer time scales. The water cycle response to ENSO events is also very realistic. The simulation, however, continues to exhibit a number of long-standing biases, such as a tendency to produce double ITCZ-like structures in the deep Tropics, and to overestimate precipitation rates poleward of the extratropical storm tracks. The lower-tropospheric dry bias, associated with the parameterized treatment of convection, also remains a simulation deficiency. Several of these biases are exacerbated when the atmosphere is coupled to fully interactive surface models, although the larger-scale behavior of the hydrological cycle remains nearly identical to simulations with prescribed distributions of sea surface temperature and sea ice.

Corresponding author address: Dr. James J. Hack, NCAR, P.O. Box 3000, Boulder, CO 80307. Email: jhack@ncar.ucar.edu

Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor, 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 1992: Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J. Geophys. Res, 97 , 1277112786.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., and S. Levis, 2006: Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM) using a dynamic global vegetation model. J. Climate, 19 , 22902301.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., P. J. Rasch, J. J. Hack, and J. R. McCaa, 2006: Representation of clouds and precipitation processes in the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21842198.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1984: Evaporation into the Atmosphere. Kluwer Academic Publishers, 299 pp.

  • Cess, R. D., and Coauthors, 1990: Inter-comparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res, 95 , 1660116615.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1992: The hydrologic cycle and its influence on climate. Nature, 359 , 373380.

  • Choudhury, B. J., N. E. DiGirolamo, J. Susskind, W. L. Darnell, S. K. Gupta, and G. Asrar, 1998: A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data II. Regional and global patterns of seasonal and annual variations. J. Hydrol, 205 , 186204.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., 2001: Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J. Atmos. Sci, 58 , 32243242.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., P. J. Rasch, B. E. Eaton, B. Khattatov, J-F. Lamarque, and C. S. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res, 106 , 73137336.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002a: A new parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res, 107 .8028, doi:10.1029/2001JD001365.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., P. J. Rasch, B. E. Eaton, D. W. Fillmore, J. T. Kiehl, T. C. Beck, and C. S. Zender, 2002b: Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts. J. Geophys. Res, 107 .4664, doi:10.1029/2001JD001365.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor, 3 , 660687.

    • Search Google Scholar
    • Export Citation
  • da Silva, A., A. C. Young, and S. Levitus, 1994: Algorithims and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA, 83 pp.

  • Davey, M. K., and Coauthors, 2002: Stoic: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn, 18 , 403420.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and C. M. Bitz, 2006: Atmospheric circulation and its effect on Arctic sea ice in CCSM3 at medium and high resolution. J. Climate, 19 , 24152436.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., K. W. Oleson, G. B. Bonan, F. M. Hoffman, P. E. Thornton, M. Vertenstein, Z-L. Yang, and X. B. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 , 23022324.

    • Search Google Scholar
    • Export Citation
  • Döll, P., and S. Siebert, 2002: Global modeling of irrigation water requirements. Water Resour. Res, 38 , 8.18.10.

  • Doney, S. C., W. G. Large, and F. O. Bryan, 1998: Surface ocean fluxes and water-mass transformation rates in the coupled NCAR Climate System Model. J. Climate, 11 , 14201441.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vorosmarty, and W. Grabs, 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16 .1042, doi:10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and T. Fichefet, 1999: Importance of ice-ocean interactions for the global ocean circulation: A model study. J. Geophys. Res, 104 , 2333723355.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., B. A. Boville, J. T. Kiehl, and P. J. Rasch, 1994: Climate statistics from the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res, 99 , 2078520813.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. T. Kiehl, and J. W. Hurrell, 1998: The hydrologic and thermodynamic characteristics of the NCAR CCM3. J. Climate, 11 , 11791206.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. M. Caron, G. Danabasoglu, K. W. Oleson, C. Bitz, and J. E. Truesdale, 2006: CCSM–CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Climate, 19 , 22672289.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, M. Eby, and A. J. Weaver, 2001: The role of ice–ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Climate, 14 , 656675.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19 , 23982414.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu, Eds. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 944 pp.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1994: Clouds and their effects on the climate system. Phys. Today, 47 , 3642.

  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth's annual global mean energy budget. Bull. Amer. Meteor. Soc, 78 , 197208.

  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17 , 36663682.

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. B. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens, 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Klein, S., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev, 127 , 25142531.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, and S. S. Pang, 2004: Fram Strait sea ice outflow. J. Geophys. Res, 109 .C01009, doi:10.1029/2003JC001785.

  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. Tech. Rep. NCAR/TN-460+STR, National Center for Atmospheric Research, Boulder, CO.

  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19 , 23252346.

  • Lejenäs, H., R. A. Madden, and J. J. Hack, 1997: Global atmospheric angular momentum and Earth-atmosphere exchange of angular momentum simulated in a general circulation model. J. Geophys. Res, 102 , 19311941.

    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297 , 22502253.

    • Search Google Scholar
    • Export Citation
  • Oberhuber, J. M., 1988: An atlas based upon the “COADS” data set: The budgets of heat, buoyancy, and turbulent kinetic energy at the surface of the global ocean. Tech. Rep. 15, Max-Planck-Institut für Meteorologie, 199 pp.

  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). Tech. Rep. NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder, CO, 174 pp.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294 , 21192124.

    • Search Google Scholar
    • Export Citation
  • Randel, D. L., T. H. V. Haar, M. A. Ringerud, G. Stephens, T. J. Greenwald, and C. L. Combs, 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc, 77 , 12331246.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., W. D. Collins, and B. E. Eaton, 2001: Understanding the Indian Ocean Experiment (INDOEX) aerosol distributions with an aerosol assimilation. J. Geophys. Res, 106 , 73377356.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and E. N. Dueñas, 2004: The International Satellite Cloud Climatology Project (ISCCP) Web Site: An online resource for research. Bull. Amer. Meteor. Soc, 85 , 167172.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, W. H., 1991: Biogeochemistry: An Analysis of Global Change. Academic Press, 433 pp.

  • Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci, 38 , 235247.

  • Stowe, L. L., C. G. Wellemeyer, T. F. Eck, and H. Y. M. Yeh, and The Nimbus-7 Cloud Data Processing Team, 1988: Nimbus-7 global cloud climatology. Part I: Algorithms and validation. J. Climate, 1 , 445470.

    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., H. Y. M. Yeh, T. F. Eck, C. G. Wellemeyer, and H. L. Kyle, and The Nimbus-7 Cloud Data Processing Team, 1989: Nimbus-7 global cloud climatology. Part II: First year results. J. Climate, 2 , 671709.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., A. Worby, H. Goosse, and T. Fichefet, 2004: Utilizing the ASPeCt sea ice thickness data set to evaluate a global coupled sea ice-ocean model. J. Geophys. Res, 109 .C07017, doi:10.1029/2003JC002242.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8 , 22552272.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13 , 39693993.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., J. L. Bamber, M. Giovinetto, J. Russell, and A. P. R. Cooper, 1999: Reassessment of net surface mass balance in Antarctica. J. Climate, 12 , 933946.

    • Search Google Scholar
    • Export Citation
  • Vinje, T., 2001: Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J. Climate, 14 , 35083517.

  • Warren, S. G., C. J. Hahn, J. London, R. L. Chervin, M. Robert, and R. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. Tech. Rep. NCAR Tech. Note TN-317+STR, National Center for Atmospheric Research, Boulder, CO. 42 pp. + 170 maps.

  • Weatherly, J. W., B. P. Briegleb, and W. G. Large, 1998: Sea ice and polar climate in the NCAR CSM. J. Climate, 11 , 14721486.

  • Webb, M., C. Senior, S. Bony, and J. J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF, and LMD atmospheric climate models. Climate Dyn, 17 , 905922.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci, 55 , 16131627.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, 1995: Mission to planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc, 76 , 21252153.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 1988: The effect of vertical finite difference approximations on simulations with the NCAR Community Climate Model. J. Climate, 1 , 4058.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, cited. 2000: Terrestrial air temperature and precipitation: Monthly and annual climatologies. [Available online at http://climate.geog.udel.edu/~climate.].

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc, 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and M. Zhang, 2000: Impact of the convection triggering function on single-column model simulations. J. Geophys. Res, 105 , 1498314996.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., C. Shields, W. G. Large, and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19 , 25452566.

  • Zhang, G. J., 2003: Convective quasi-equilibrium in the tropical western Pacific: Comparison with midlatitude continental environment. J. Geophys. Res, 108 .4592, doi:10.1029/2003JD003520.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 909 289 19
PDF Downloads 354 87 5